scholarly journals Acetyl CoA Carboxylase: Isolation and Characterization of Native Biotin Carboxyl Carrier Protein

1971 ◽  
Vol 68 (7) ◽  
pp. 1512-1515 ◽  
Author(s):  
R. R. Fall ◽  
A. M. Nervi ◽  
A. W. Alberts ◽  
P. R. Vagelos
Structure ◽  
2013 ◽  
Vol 21 (4) ◽  
pp. 650-657 ◽  
Author(s):  
Tyler C. Broussard ◽  
Matthew J. Kobe ◽  
Svetlana Pakhomova ◽  
David B. Neau ◽  
Amanda E. Price ◽  
...  

1994 ◽  
Vol 269 (9) ◽  
pp. 6859-6865
Author(s):  
A.H. Mohamed ◽  
W.Y. Huang ◽  
W. Huang ◽  
K.V. Venkatachalam ◽  
S.J. Wakil

1996 ◽  
Vol 315 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Kieran M. ELBOROUGH ◽  
Robert WINZ ◽  
Ranjit K. DEKA ◽  
Jonathan E. MARKHAM ◽  
Andrew J. WHITE ◽  
...  

In the oilseed rape Brassica napus there are two forms of acetyl-CoA carboxylase (ACCase). As in other dicotyledonous plants there is a type I ACCase, the single polypeptide 220 kDa form, and a type II multi-subunit complex analogous to that of Escherichia coli and Anabaena. This paper describes the cloning and characterization of a plant biotin carboxyl carrier protein (BCCP) from the type II ACCase complex that shows 61% identity/79% similarity with Anabaena BCCP at the amino acid level. Six classes of nuclear encoded oilseed rape BCCP cDNA were cloned, two of which contained the entire coding region. The BCCP sequences allowed the assignment of function to two previously unassigned Arabidopsis expressed sequence tag (EST) sequences. We also report the cloning of a second type II ACCase component from oilseed rape, the β-carboxyltransferase subunit (βCT), which is chloroplast-encoded. Northern analysis showed that although the relative levels of BCCP and βCT mRNA differed between different oilseed rape tissues, their temporal patterns of expression were identical during embryo development. At the protein level, expression of BCCP during embryo development was studied by Western blotting, using affinity-purified anti-biotin polyclonal sera. With this technique a 35 kDa protein thought to be BCCP was shown to reside within the chloroplast. This analysis also permitted us to view the differential expression of several unidentified biotinylated proteins during embryogenesis.


1992 ◽  
Vol 267 (8) ◽  
pp. 5474-5481
Author(s):  
H Martínez-Blanco ◽  
A Reglero ◽  
M Fernández-Valverde ◽  
M.A. Ferrero ◽  
M.A. Moreno ◽  
...  

Weed Science ◽  
1997 ◽  
Vol 45 (6) ◽  
pp. 750-755 ◽  
Author(s):  
Luc Bourgeois ◽  
Norm C. Kenkel ◽  
Ian N. Morrison

The purpose of this study was to determine cross-resistance patterns among wild oat lines resistant to acetyl-CoA carboxylase (ACCase) inhibitors and to determine which, if any, cross-resistant type was more common than another. Discriminatory concentrations of two aryloxyphenoxy-propionates (APP) and three cyclohexanediones (CHD) were determined using a petri-dish bioassay. These concentrations were then applied to 82 resistant wild oat lines identified in previous studies. In addition, two resistant standards (UM1 and UM33) and a susceptible standard (UM5) were included in the experiments. Coleoptile lengths expressed as percentages of untreated controls were used to assess the level of resistance to each herbicide. Large variations were observed among wild oat lines and herbicides. However, cluster analysis summarized the relationship between the five herbicides (variables) and the wild oat lines into three main cross-resistance types. Type A included wild oat lines with high resistance to APP herbicides and no or low resistance to CHD herbicides. Types B and C included those with low to moderate resistant and high levels of resistance to all five herbicides, respectively. Type C was the most common cross-resistance type. Relationships among herbicides were determined using pairwise correlation and principal component analysis (PCA). All correlations were high between APP herbicides and between CHD herbicides but not between APP and CHD herbicides. The first two axes of the PCA accounted for 88.4% of the total variance, with the first axis correlated to the CHD herbicides and the second axis correlated to the APP herbicides. In the PCA, wild oat lines were segregated into the three types identified in the cluster analysis. Although CHD and APP herbicides bind at the same region on the ACCase, resistant wild oat lines respond differently to them.


Sign in / Sign up

Export Citation Format

Share Document