scholarly journals A way of following individual cells in the migrating slugs ofDictyostelium discoideum

1998 ◽  
Vol 95 (16) ◽  
pp. 9355-9359 ◽  
Author(s):  
J. T. Bonner

In the development of the cellular slime moldDictyostelium discoideumthere is a stage in which the aggregated amoebae form a migrating slug that moves forward in a polar fashion, showing sensitive orientation to environmental cues, as well as early signs of differentiation into anterior prestalk and posterior prespore cells. Heretofore it has been difficult to follow the movement of the individual cells within the slug, but a new method is described in which small, flat (one cell thick) slugs are produced in a glass-mineral oil interface where one can follow the movement of all the cells. Observations of time-lapse videos reveal the following facts about slug migration: (i) While the posterior cells move straight forward, the anterior cells swirl about rapidly in a chaotic fashion. (ii) Turning involves shifting the high point of these hyperactive cells. (iii) Both the anterior and the posterior cells move forward on their own power as the slug moves forward. (iv) There are no visible regular oscillations within the slug. (v) The number of prestalk and prespore cells is proportional for a range of sizes of these mini-slugs. All of these observations on thin slugs are consistent with what one finds in normal, three-dimensional slugs.

1989 ◽  
Vol 67 (10) ◽  
pp. 712-718 ◽  
Author(s):  
S. Ramagopal

This study documents the presence of three acidic proteins, A1 (pI 4.95), A2 (pI 4.85), and A3 (pI 4.70), in Dictyostelium discoideum ribosomes. All three proteins showed an apparent molecular mass of 13 000 by two-dimensional, sodium dodecyl sulfate gel electrophoresis. They were selectively released by treatment of ribosomes with 50% ethanol – 1 M NH4Cl. The amino acid compositions of A1, A2, and A3 were identical and indicated a predominant amount of alanine. All the above properties are shared by Escherichia coli proteins L7 and L12 and acidic ribosomal proteins in many eukaryotes. Unlike other eukaryotic systems, the acidic proteins of D. discoideum were found associated with the 40S rather than the 60S ribosomal subunit. Acidic proteins analogous in size and electrophoretic mobility to those of D. discoideum were also detected in several other cellular slime mold strains. Not one of the cellular slime mold acidic proteins reacted with antibodies to E. coli proteins L7 and L12 in immunodiffusion tests. In D. discoideum, the distribution of acidic proteins was altered during development. Amoebae contained all three proteins. In spores, A, was absent and the relative amounts of A2 and A3 were lower than in amoebae. In addition, nine other acidic ribosomal proteins exhibited differences between vegetative amoebae and spores.Key words: acidic ribosomal proteins, development, cellular slime mold, L7 and L12 proteins, two-dimensional gel electrophoresis.


Development ◽  
1978 ◽  
Vol 44 (1) ◽  
pp. 45-51
Author(s):  
Michael Peacock ◽  
David R. Soll

The relationship between aggregate size and morphological field size has been investigated in the cellular slime mold Dictyostelium discoideum. Evidence is presented that aggregate size and field size exhibit different temperature sensitivities and that an aggregate can be induced to separate into several morphological fields by a decrease in temperature. In addition, evidence is presented that field size is stabilized at a point in time just prior to tip formation.


Sign in / Sign up

Export Citation Format

Share Document