5s rrna
Recently Published Documents


TOTAL DOCUMENTS

614
(FIVE YEARS 20)

H-INDEX

49
(FIVE YEARS 2)

2021 ◽  
Vol 22 (21) ◽  
pp. 11314
Author(s):  
Hailiang Zhao ◽  
Yao Qin ◽  
Ziyi Xiao ◽  
Kun Liang ◽  
Dianming Gong ◽  
...  

RNA polymerase III (RNAPIII) contains 17 subunits forming 4 functional domains that control the different stages of RNAPIII transcription and are dedicated to the synthesis of small RNAs such as 5S rRNA and tRNAs. Here, we identified 23 genes encoding these subunits in Arabidopsis (Arabidopsis thaliana) and further analyzed 5 subunits (NRPC2, NRPC3, NRPC8, NRPABC1, and NRPABC2) encoded by 6 genes with different expression patterns and belonging to different sub-complexes. The knockdown of these genes repressed the expression of 5S rRNA and tRNAs, causing seed developmental arrest at different stages. Among these knockdown mutants, RNA-seq analysis revealed 821 common differentially expressed genes (DEGs), significantly enriched in response to stress, abscisic acid, cytokinins, and the jasmonic acid signaling pathway. Weighted gene co-expression network analysis (WGCNA) revealed several hub genes involved in embryo development, carbohydrate metabolic and lipid metabolic processes. We identified numerous unique DEGs between the mutants belonging to pathways, including cell proliferation, ribosome biogenesis, cell death, and tRNA metabolic processes. Thus, NRPC2, NRPC3, NRPC8, NRPABC1, and NRPABC2 control seed development in Arabidopsis by influencing RNAPIII activity and, thus, hormone signaling. Reduced expression of these subunit genes causes an insufficient accumulation of the total RNAPIII, leading to the phenotypes observed following the genetic knockdown of these subunits.


2021 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Mahipal Singh ◽  
Pushpa Yadav ◽  
Anand K. Yadav

The 5S ribosomal RNA gene(s) and their associated intergenic spacer regions were amplified from Carica papaya and Carica quercifolia by polymerase chain reaction. Both Carica species exhibited differently sized amplification products. Sequence analysis of these PCR products revealed that the 5S rRNA genes are arranged as tandem repeats in these regions. Sequence data revealed that the 5S rRNA gene from Carica quercifolia was 119 bp in length. Sequence variation was observed in various 5S rRNA gene copies cloned from Carica quercifolia. Only truncated 5S rRNA gene but with its full spacer region was recovered from Carica papaya. Interestingly, intergenic spacer sequence cloned from Carica papaya contained two specific domains, a 30bp “CT” rich domain exhibiting 95-100% homology to several human chromosomes and a domain matching with mitrocomin precursor, a photo-protein from Mitrocoma cellularia. The role of 5S rRNA gene and their spacer regions in discerning the germplasm and in adaptation of the species is discussed.


2021 ◽  
Author(s):  
Joshua Vacarizas ◽  
Takahiro Taguchi ◽  
Takuma Mezaki ◽  
Masatoshi Okumura ◽  
Rei Kawakami ◽  
...  

Abstract The short and similar sized chromosomes of Acropora pose a challenge for karyotyping. Conventional methods, such as staining of heterochromatic regions, provide unclear banding patterns that hamper identification of such chromosomes. In this study, we used short single-sequence probes for tandemly repetitive 5S ribosomal RNA (rRNA) and core histone genes to identify specific chromosomes of Acropora pruinosa. Both the probes produced intense signals in fluorescence in situ hybridization, which distinguished chromosome pairs. The locus of the core histone gene was on chromosome 8, whereas that of 5S rRNA gene was on chromosome 5. The sequence of the 5S rRNA probe was composed largely of U1 and U2 spliceosomal small nuclear RNA (snRNA) genes and their interspacers, flanked by short sequences of the 5S rRNA gene. This is the first report of a tandemly repetitive linkage of snRNA and 5S rRNA genes in Cnidaria. Based on the constructed tentative karyogram and whole genome hybridization, the longest chromosome pair (chromosome 1) was heteromorphic. The probes also hybridized effectively with chromosomes of other Acropora species and population, revealing an additional core histone gene locus. We demonstrated the applicability of short-sequence probes as chromosomal markers with potential for use across populations and species of Acropora.


RNA Biology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Stephanie Oerum ◽  
Marjorie Catala ◽  
Maxime Bourguet ◽  
Laetitia Gilet ◽  
Pierre Barraud ◽  
...  

Author(s):  
V. M. Mel’nyk ◽  
I. O. Andreev ◽  
G. Yu. Myryuta ◽  
A. Y. Shelyfist ◽  
R. A. Volkov ◽  
...  

Aim. The study was aimed at cloning and analysis of molecular organization of 5S rDNA intergenic spacer (IGS) in two Gentiana species of Ukrainian flora, G. pneumonanthe L. and G. punctata L. Methods. 5S rDNA IGS sequence was amplified using polymerase chain reaction (PCR) with a pair of primers specific for the gene coding region. The produced PCR products were fractionated by gel-electrophoresis, isolated, ligated into plasmid pUC18, cloned into E. coli, and then sequenced. Nucleotide sequences were aligned using the Muscle algorithm and analyzed in the Unipro UGENE software. Results. The intergenic spacer region of the 5S rRNA genes was cloned and sequenced for two Gentiana species of Ukrainian flora, G. pneumonanthe and G. punctata. Based on the analysis of the alignment of the IGS sequences of five Gentiana species from three sections, some features of molecular organization of IGS of 5S rRNA genes in the studied species were established. In particular, motifs typical for other angiosperm families were identified, such as conservative oligo-dT motif at the IGS 3'-end that served as a transcription termination site and AT-rich region preceding the coding region of 5S rRNA gene. However, in the region of transcription initiation, conservative GC-element in position -13 is changed to AC. Conclusions. The interspecific variation of molecular organization of 5S rDNA IGS was identified among Gentiana species that can be used to clarify the phylogenetic relationships between members of this genus.Keywords: Gentiana species, 5S rDNA intergenic spacer, molecular organization, phylogeny.


2020 ◽  
Vol 48 (22) ◽  
pp. 12648-12659
Author(s):  
Masatoshi Wakamori ◽  
Kohki Okabe ◽  
Kiyoe Ura ◽  
Takashi Funatsu ◽  
Masahiro Takinoue ◽  
...  

Abstract Eukaryotic transcription is epigenetically regulated by chromatin structure and post-translational modifications (PTMs). For example, lysine acetylation in histone H4 is correlated with activation of RNA polymerase I-, II- and III-driven transcription from chromatin templates, which requires prior chromatin remodeling. However, quantitative understanding of the contribution of particular PTM states to the sequential steps of eukaryotic transcription has been hampered partially because reconstitution of a chromatin template with designed PTMs is difficult. In this study, we reconstituted a di-nucleosome with site-specifically acetylated or unmodified histone H4, which contained two copies of the Xenopus somatic 5S rRNA gene with addition of a unique sequence detectable by hybridization-assisted fluorescence correlation spectroscopy. Using a Xenopus oocyte nuclear extract, we analyzed the time course of accumulation of nascent 5S rRNA-derived transcripts generated on chromatin templates in vitro. Our mathematically described kinetic model and fitting analysis revealed that tetra-acetylation of histone H4 at K5/K8/K12/K16 increases the rate of transcriptionally competent chromatin formation ∼3-fold in comparison with the absence of acetylation. We provide a kinetic model for quantitative evaluation of the contribution of epigenetic modifications to chromatin transcription.


Author(s):  
Hoda B. M. Ali ◽  
Samira A. Osman

Abstract Background Fluorescence In Situ Hybridization (FISH) played an essential role to locate the ribosomal RNA genes on the chromosomes that offered a new tool to study the chromosome structure and evolution in plant. The 45S and 5S rRNA genes are independent and localized at one or more loci per the chromosome complement, their positions along chromosomes offer useful markers for chromosome discriminations. In the current study FISH has been performed to locate 45S and 5S rRNA genes on the chromosomes of nine Lathyrus species belong to five different sections, all have chromosome number 2n=14, Lathyrus gorgoni Parl, Lathyrus hirsutus L., Lathyrus amphicarpos L., Lathyrus odoratus L., Lathyrus sphaericus Retz, Lathyrus incospicuus L, Lathyrus paranensis Burkart, Lathyrus nissolia L., and Lathyrus articulates L. Results The revealed loci of 45S and 5S rDNA by FISH on metaphase chromosomes of the examined species were as follow: all of the studied species have one 45S rDNA locus and one 5S rDNA locus except L. odoratus L., L. amphicarpos L. and L. sphaericus Retz L. have two loci of 5S rDNA. Three out of the nine examined species have the loci of 45S and 5S rRNA genes on the opposite arms of the same chromosome (L. nissolia L., L. amphicarpos L., and L. incospicuus L.), while L. hirsutus L. has both loci on the same chromosome arm. The other five species showed the loci of the two types of rDNA on different chromosomes. Conclusion The detected 5S and 45S rDNA loci in Lathyrus could be used as chromosomal markers to discriminate the chromosome pairs of the examined species. FISH could discriminate only one chromosome pair out of the seven pairs in three species, in L. hirsutus L., L. nissolia L. and L. incospicuus L., and two chromosome pairs in five species, in L. paranensis Burkart, L. odoratus L., L. amphicarpos L., L. gorgoni Parl. and L. articulatus L., while it could discriminate three chromosome pairs in L. sphaericus Retz. these results could contribute into the physical genome mapping of Lathyrus species and the evolution of rDNA patterns by FISH in the coming studies in future.


Harmful Algae ◽  
2020 ◽  
Vol 98 ◽  
pp. 101903
Author(s):  
Alfredo de Bustos ◽  
Rosa I Figueroa ◽  
Marta Sixto ◽  
Isabel Bravo ◽  
Ángeles Cuadrado

Sign in / Sign up

Export Citation Format

Share Document