scholarly journals Wild-type but Not Parkinson's Disease-related Ala-53 → Thr Mutant α-Synuclein Protects Neuronal Cells from Apoptotic Stimuli

2000 ◽  
Vol 275 (31) ◽  
pp. 24065-24069 ◽  
Author(s):  
Cristine Alves da Costa ◽  
Karine Ancolio ◽  
Frédéric Checler
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Manisha Singh ◽  
Manish Jain ◽  
Samrat Bose ◽  
Ashutosh Halder ◽  
Tapas Chandra Nag ◽  
...  

AbstractOxysterols play vital roles in the human body, ranging from cell cycle regulation and progression to dopaminergic neurogenesis. While naïve human mesenchymal stem cells (hMSCs) have been explored to have neurogenic effect, there is still a grey area to explore their regenerative potential after in vitro differentiation. Hence, in the current study, we have investigated the neurogenic effect of 22(R)-hydroxycholesterol (22-HC) on hMSCs obtained from bone marrow, adipose tissue and dental pulp. Morphological and morphometric analysis revealed physical differentiation of stem cells into neuronal cells. Detailed characterization of differentiated cells affirmed generation of neuronal cells in culture. The percentage of generation of non-DA cells in the culture confirmed selective neurogenic potential of 22-HC. We substantiated the efficacy of these cells in neuro-regeneration by transplanting them into Parkinson’s disease Wistar rat model. MSCs from dental pulp had maximal regenerative effect (with 80.20 ± 1.5% in vitro differentiation efficiency) upon transplantation, as shown by various behavioural examinations and immunohistochemical tests. Subsequential analysis revealed that 22-HC yields a higher percentage of functional DA neurons and has differential effect on various tissue-specific primary human MSCs. 22-HC may be used for treating Parkinson’s disease in future with stem cells.


2013 ◽  
Vol 10 (1) ◽  
Author(s):  
Sachiko Tanaka ◽  
Atsuko Ishii ◽  
Hirokazu Ohtaki ◽  
Seiji Shioda ◽  
Takemi Yoshida ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Michael Fiske ◽  
Michael White ◽  
Stephanie Valtierra ◽  
Sara Herrera ◽  
Keith Solvang ◽  
...  

In Parkinson’s disease (PD), midbrain dopaminergic neuronal death is linked to the accumulation of aggregated α-synuclein. The familial PD mutant form of α-synuclein, E46K, has not been thoroughly evaluated yet in an organismal model system. Here, we report that E46K resembled wild-type (WT) α-synuclein in Saccharomyces cerevisiae in that it predominantly localized to the plasma membrane, and it did not induce significant toxicity or accumulation. In contrast, in Schizosaccharomyces pombe, E46K did not associate with the plasma membrane. Instead, in one strain, it extensively aggregated in the cytoplasm and was as toxic as WT. Remarkably, in another strain, E46K extensively associated with the endomembrane system and was more toxic than WT. Our studies recapitulate and extend aggregation and phospholipid membrane association properties of E46K previously observed in vitro and cell culture. Furthermore, it supports the notion that E46K generates toxicity partly due to increased association with endomembrane systems within cells.


2000 ◽  
Vol 20 (17) ◽  
pp. 6365-6373 ◽  
Author(s):  
Philipp J. Kahle ◽  
Manuela Neumann ◽  
Laurence Ozmen ◽  
Veronika Müller ◽  
Helmut Jacobsen ◽  
...  

1997 ◽  
Vol 12 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Ilan Ziv ◽  
Rina Zilkha-Falb ◽  
Daniel Offen ◽  
Anat Shirvan ◽  
Ari Barzilai ◽  
...  

2019 ◽  
Vol 11 (514) ◽  
pp. eaau6870 ◽  
Author(s):  
Lena F. Burbulla ◽  
Sohee Jeon ◽  
Jianbin Zheng ◽  
Pingping Song ◽  
Richard B. Silverman ◽  
...  

Mutations in the GBA1 gene encoding the lysosomal enzyme β-glucocerebrosidase (GCase) represent the most common risk factor for Parkinson’s disease (PD). GCase has been identified as a potential therapeutic target for PD and current efforts are focused on chemical chaperones to translocate mutant GCase into lysosomes. However, for several GBA1-linked forms of PD and PD associated with mutations in LRRK2, DJ-1, and PARKIN, activating wild-type GCase represents an alternative approach. We developed a new small-molecule modulator of GCase called S-181 that increased wild-type GCase activity in iPSC-derived dopaminergic neurons from sporadic PD patients, as well as patients carrying the 84GG mutation in GBA1, or mutations in LRRK2, DJ-1, or PARKIN who had decreased GCase activity. S-181 treatment of these PD iPSC-derived dopaminergic neurons partially restored lysosomal function and lowered accumulation of oxidized dopamine, glucosylceramide and α-synuclein. Moreover, S-181 treatment of mice heterozygous for the D409V GBA1 mutation (Gba1D409V/+) resulted in activation of wild-type GCase and consequent reduction of GCase lipid substrates and α-synuclein in mouse brain tissue. Our findings point to activation of wild-type GCase by small-molecule modulators as a potential therapeutic approach for treating familial and sporadic forms of PD that exhibit decreased GCase activity.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 928
Author(s):  
Jung Hwa Seo ◽  
Seong-Woong Kang ◽  
Kyungri Kim ◽  
Soohyun Wi ◽  
Jang Woo Lee ◽  
...  

Although environmental enrichment (EE) is known to reduce oxidative stress in Parkinson’s disease (PD), the metabolic alternations for detoxifying endogenous and xenobiotic compounds according to various brain regions are not fully elucidated yet. This study aimed to further understand the role of EE on detoxifying enzymes, especially those participating in phase I of metabolism, by investigating the levels of enzymes in various brain regions such as the olfactory bulb, brain stem, frontal cortex, and striatum. Eight-month-old transgenic PD mice with the overexpression of human A53T α-synuclein and wild-type mice were randomly allocated to either standard cage condition or EE for 2 months. At 10 months of age, the expression of detoxifying enzymes was evaluated and compared with wild-type of the same age raised in standard cages. EE improved neurobehavioral outcomes such as olfactory and motor function in PD mice. EE-treated mice showed that oxidative stress was attenuated in the olfactory bulb, brain stem, and frontal cortex. EE also reduced apoptosis and induced cell proliferation in the subventricular zone of PD mice. The overexpression of detoxifying enzymes was observed in the olfactory bulb and brain stem of PD mice, which was ameliorated by EE. These findings were not apparent in the other experimental regions. These results suggest the stage of PD pathogenesis may differ according to brain region, and that EE has a protective effect on the PD pathogenesis by decreasing oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document