detoxifying enzymes
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 65)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Vol 371 ◽  
pp. 131092
Author(s):  
Le Wang ◽  
Wei Huang ◽  
Yan Shen ◽  
Yawei Zhao ◽  
Dapeng Wu ◽  
...  

Author(s):  
Natalie Sandlin ◽  
Darius Russell Kish ◽  
John Kim ◽  
Marco Zaccaria ◽  
Babak Momeni

Biological organisms carry a rich potential for removing toxins from our environment, but identifying suitable candidates and improving them remain challenging. We explore the use of computational tools to discover strains and enzymes that detoxify harmful compounds. In particular, we will focus on mycotoxins—fungi-produced toxins that contaminate food and feed—and biological enzymes that are capable of rendering them less harmful. We discuss the use of established and novel computational tools to complement existing empirical data in three directions: discovering the prospect of detoxification among underexplored organisms, finding important cellular processes that contribute to detoxification, and improving the performance of detoxifying enzymes. We hope to create a synergistic conversation between researchers in computational biology and those in the bioremediation field. We showcase open bioremediation questions where computational researchers can contribute and highlight relevant existing and emerging computational tools that could benefit bioremediation researchers.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009888
Author(s):  
Bin Zhu ◽  
Linhong Li ◽  
Rui Wei ◽  
Pei Liang ◽  
Xiwu Gao

The evolution of resistance to insecticides is well known to be closely associated with the overexpression of detoxifying enzymes. Although the role of glutathione S-transferase (GST) genes in insecticide resistance has been widely reported, the underlying regulatory mechanisms are poorly understood. Here, one GST gene (GSTu1) and its antisense transcript (lnc-GSTu1-AS) were identified and cloned, and both of them were upregulated in several chlorantraniliprole-resistant Plutella xylostella populations. GSTu1 was confirmed to be involved in chlorantraniliprole resistance by direct degradation of this insecticide. Furthermore, we demonstrated that lnc-GSTu1-AS interacted with GSTu1 by forming an RNA duplex, which masked the binding site of miR-8525-5p at the GSTu1-3′UTR. In summary, we revealed that lnc-GSTu1-AS maintained the mRNA stability of GSTu1 by preventing its degradation that could have been induced by miR-8525-5p and thus increased the resistance of P. xylostella to chlorantraniliprole. Our findings reveal a new noncoding RNA-mediated pathway that regulates the expression of detoxifying enzymes in insecticide-resistant insects and offer opportunities for the further understanding of the mechanisms of insecticide and drug resistance.


Author(s):  
Haifa Bichiou ◽  
Sameh Rabhi ◽  
Cherif Ben Hamda ◽  
Cyrine Bouabid ◽  
Meriam Belghith ◽  
...  

Macrophage–Leishmania interactions are central to parasite growth and disease outcome. Macrophages have developed various strategies to fight invaders, including oxidative burst. While some microorganisms seem to survive and even thrive in an oxidative environment, others are susceptible and get killed. To counter oxidative stress, macrophages switch the expressions of cytoprotective and detoxifying enzymes, which are downstream targets of the nuclear factor erythroid 2-related factor 2 (Nrf2), to enhance cell survival. We have explored the transcription of NRF2 and of its target genes and compared the effect of the parasite on their transcription in bone marrow-derived macrophages (BMdMs) from Leishmania-resistant and Leishmania-susceptible mice. While heme oxygenase 1 (HO-1) transcription is independent of the genetic background, the transcription of glutathione reductase (Gsr) and of cysteine/glutamate exchange transporter (Slc7a11), involved in glutathione accumulation, was differentially regulated in BMdMs from both mouse strains. We also show that, except for HO-1, known to favor the survival of the parasite, the transcription of the selected genes, including Gsr, CD36, and catalase (CAT), was actively repressed, if not at all time points at least at the later ones, by the parasite, especially in Balb/c BMdMs. Consistent with these results, we found that the silencing of NRF2 in this study increases the survival and multiplication of the parasite.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Hassan Salem ◽  
Martin Kaltenpoth

Beetles are hosts to a remarkable diversity of bacterial symbionts. In this article, we review the role of these partnerships in promoting beetle fitness following a surge of recent studies characterizing symbiont localization and function across the Coleoptera. Symbiont contributions range from the supplementation of essential nutrients and digestive or detoxifying enzymes to the production of bioactive compounds providing defense against natural enemies. Insights on this functional diversity highlight how symbiosis can expand the host's ecological niche, but also constrain its evolutionary potential by promoting specialization. As bacterial localization can differ within and between beetle clades, we discuss how it corresponds to the microbe's beneficial role and outline the molecular and behavioral mechanisms underlying symbiont translocation and transmission by its holometabolous host. In reviewing this literature, we emphasize how the study of symbiosis can inform our understanding of the phenotypic innovations behind the evolutionary success of beetles. Expected final online publication date for the Annual Review of Entomology, Volume 67 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 27 (9) ◽  
pp. 2127-2139
Author(s):  
Dipali Rani Gupta ◽  
Sanjida Khanom ◽  
Md. Motiar Rohman ◽  
Mirza Hasanuzzaman ◽  
Musrat Zahan Surovy ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 344
Author(s):  
Javiera Soto ◽  
Trevor C. Charles ◽  
Michael D. J. Lynch ◽  
Giovanni Larama ◽  
Hector Herrera ◽  
...  

Brevundimonas sp. is a bacteria able to grow in metal(loid) contaminated soil from Puchuncaví Valley, central Chile. This study has isolated a bacterial strain capable of growth under high doses of arsenic (As) (6000 mg L−1), and a draft genome sequence was generated. Additionally, real-time PCR was performed to examine the effect of As on some genes related to As resistance. Results demonstrated a total of 3275 predicted annotated genes with several genes related to the ars operon, metal(loid) resistance-related genes, metal efflux pumps, and detoxifying enzymes. Real-time PCR showed that the arsB involved in the efflux of As was down-regulated, whereas arsR, arsH, and ACR3 did not show differences with the addition of As. Our study provides novel evidence of diverse As regulating systems in tolerant bacteria that will lead to a better understanding of how microorganisms overcome toxic elements and colonize As contaminated soils and to the possible use of their specific properties in bioremediation.


2021 ◽  
Vol 22 (15) ◽  
pp. 7963
Author(s):  
Sonia Emanuele ◽  
Adriana Celesia ◽  
Antonella D’Anneo ◽  
Marianna Lauricella ◽  
Daniela Carlisi ◽  
...  

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a well-known transcription factor best recognised as one of the main regulators of the oxidative stress response. Beyond playing a crucial role in cell defence by transactivating cytoprotective genes encoding antioxidant and detoxifying enzymes, Nrf2 is also implicated in a wide network regulating anti-inflammatory response and metabolic reprogramming. Such a broad spectrum of actions renders the factor a key regulator of cell fate and a strategic player in the control of cell transformation and response to viral infections. The Nrf2 protective roles in normal cells account for its anti-tumour and anti-viral functions. However, Nrf2 overstimulation often occurs in tumour cells and a complex correlation of Nrf2 with cancer initiation and progression has been widely described. Therefore, if on one hand, Nrf2 has a dual role in cancer, on the other hand, the factor seems to display a univocal function in preventing inflammation and cytokine storm that occur under viral infections, specifically in coronavirus disease 19 (COVID-19). In such a variegate context, the present review aims to dissect the roles of Nrf2 in both cancer and COVID-19, two widespread diseases that represent a cause of major concern today. In particular, the review describes the molecular aspects of Nrf2 signalling in both pathological situations and the most recent findings about the advantages of Nrf2 inhibition or activation as possible strategies for cancer and COVID-19 treatment respectively.


Sign in / Sign up

Export Citation Format

Share Document