scholarly journals Direct evidence for a new mode of plant defense against insects via a novel polygalacturonase-inhibiting protein expression strategy

2020 ◽  
Vol 295 (33) ◽  
pp. 11833-11844
Author(s):  
Wiebke Haeger ◽  
Jana Henning ◽  
David G. Heckel ◽  
Yannick Pauchet ◽  
Roy Kirsch

Plant cell wall–associated polygalacturonase-inhibiting proteins (PGIPs) are widely distributed in the plant kingdom. They play a crucial role in plant defense against phytopathogens by inhibiting microbial polygalacturonases (PGs). PGs hydrolyze the cell wall polysaccharide pectin and are among the first enzymes to be secreted during plant infection. Recent studies demonstrated that herbivorous insects express their own PG multi-gene families, raising the question whether PGIPs also inhibit insect PGs and protect plants from herbivores. Preliminary evidence suggested that PGIPs may negatively influence larval growth of the leaf beetle Phaedon cochleariae (Coleoptera: Chrysomelidae) and identified BrPGIP3 from Chinese cabbage (Brassica rapa ssp. pekinensis) as a candidate. PGIPs are predominantly studied in planta because their heterologous expression in microbial systems is problematic and instability and aggregation of recombinant PGIPs has complicated in vitro inhibition assays. To minimize aggregate formation, we heterologously expressed BrPGIP3 fused to a glycosylphosphatidylinositol (GPI) membrane anchor, immobilizing it on the extracellular surface of insect cells. We demonstrated that BrPGIP3_GPI inhibited several P. cochleariae PGs in vitro, providing the first direct evidence of an interaction between a plant PGIP and an animal PG. Thus, plant PGIPs not only confer resistance against phytopathogens, but may also aid in defense against herbivorous beetles.

Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 312 ◽  
Author(s):  
Vivek Yadav ◽  
Zhongyuan Wang ◽  
Chunhua Wei ◽  
Aduragbemi Amo ◽  
Bilal Ahmed ◽  
...  

Pathogens hitting the plant cell wall is the first impetus that triggers the phenylpropanoid pathway for plant defense. The phenylpropanoid pathway bifurcates into the production of an enormous array of compounds based on the few intermediates of the shikimate pathway in response to cell wall breaches by pathogens. The whole metabolomic pathway is a complex network regulated by multiple gene families and it exhibits refined regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels. The pathway genes are involved in the production of anti-microbial compounds as well as signaling molecules. The engineering in the metabolic pathway has led to a new plant defense system of which various mechanisms have been proposed including salicylic acid and antimicrobial mediated compounds. In recent years, some key players like phenylalanine ammonia lyases (PALs) from the phenylpropanoid pathway are proposed to have broad spectrum disease resistance (BSR) without yield penalties. Now we have more evidence than ever, yet little understanding about the pathway-based genes that orchestrate rapid, coordinated induction of phenylpropanoid defenses in response to microbial attack. It is not astonishing that mutants of pathway regulator genes can show conflicting results. Therefore, precise engineering of the pathway is an interesting strategy to aim at profitably tailored plants. Here, this review portrays the current progress and challenges for phenylpropanoid pathway-based resistance from the current prospective to provide a deeper understanding.


2020 ◽  
Author(s):  
Mathias Choquer ◽  
Christine Rascle ◽  
Isabelle R Gonçalves ◽  
Amélie de Vallée ◽  
Cécile Ribot ◽  
...  

SummaryGrey mold disease affects fruits, vegetables and ornamental plants around the world, causing considerable losses every year. Its causing agent, the necrotrophic fungus Botrytis cinerea, produces infection cushions (IC) that are compound appressorial structures dedicated to the penetration of the plant tissues.A microarray analysis was performed to identify genes up-regulated in mature IC. The expression data were supported by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and mutagenesis of two candidate genes.1,231 up-regulated genes and 79 up-accumulated proteins were identified. They highlight a secretion of ROS, secondary metabolites including phytotoxins, and proteins involved in virulence: proteases, plant cell wall degrading enzymes and necrosis inducers. The role in pathogenesis was confirmed for two up-regulated fasciclin genes. DHN-melanin pathway and chitin deacetylases genes are up-regulated and the conversion of chitin into chitosan was confirmed by differential staining of the IC cell wall. In addition, up-regulation of sugar transport and sugar catabolism encoding genes was found.These results support a role for the B. cinerea IC in plant penetration and suggest other unexpected roles for this fungal organ, in camouflage, necrotrophy or nutrition of the pathogen.


2021 ◽  
Author(s):  
Florian J Kraemer ◽  
China Lunde ◽  
Moritz Koch ◽  
Benjamin M Kuhn ◽  
Clemens Ruehl ◽  
...  

Abstract The presence of mixed-linkage (1,3;1,4)-β-D-glucan (MLG) in plant cell walls is a key feature of grass species such as cereals, the main source of calorie intake for humans and cattle. Accumulation of this polysaccharide involves the coordinated regulation of biosynthetic and metabolic machineries. While several components of the MLG biosynthesis machinery have been identified in diverse plant species, degradation of MLG is poorly understood. In this study, we performed a large-scale forward genetic screen for maize (Zea mays) mutants with altered cell wall polysaccharide structural properties. As a result, we identified a maize mutant with increased MLG content in several tissues, including adult leaves and senesced organs, where only trace amounts of MLG are usually detected. The causative mutation was found in the GRMZM2G137535 gene, encoding a GH17 licheninase as demonstrated by an in vitro activity assay of the heterologously expressed protein. In addition, maize plants overexpressing GRMZM2G137535 exhibit a 90% reduction in MLG content, indicating that the protein is not only required, but its expression is sufficient to degrade MLG. Accordingly, the mutant was named MLG hydrolase 1 (mlgh1). mlgh1 plants show increased saccharification yields upon enzymatic digestion. Stacking mlgh1 with lignin-deficient mutations results in synergistic increases in saccharification. Time profiling experiments indicate that wall MLG content is modulated during day/night cycles, inversely associated with MLGH1 transcript accumulation. This cycling is absent in the mlgh1 mutant, suggesting that the mechanism involved requires MLG degradation, which may in turn regulate MLGH1 gene expression.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


2021 ◽  
Author(s):  
Nathalie D Lackus ◽  
Axel Schmidt ◽  
Jonathan Gershenzon ◽  
Tobias G Köllner

AbstractBenzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.


2021 ◽  
Vol 22 (6) ◽  
pp. 3077
Author(s):  
Zhenzhen Hao ◽  
Xiaolu Wang ◽  
Haomeng Yang ◽  
Tao Tu ◽  
Jie Zhang ◽  
...  

Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.


1988 ◽  
Vol 68 (3) ◽  
pp. 787-799 ◽  
Author(s):  
V. GIRARD ◽  
G. DUPUIS

In view of the large variation found in plant cell wall digestibilities with ruminants, an attempt was made to group 124 feeds into different lignification classes (clusters) on the basis of chemical characteristics. Each feed cluster was described using a structural coefficient [Formula: see text] that related the potentially digestible fiber (PDF, %) to the ratio between lignin and cell wall volume. The optimum number of clusters was determined iteratively by performing a regression of the apparent digestibility of dry matter at maintenance level (DDM1, %) against the PDF and cell soluble (SOL, %) contents of feeds. The [Formula: see text] coefficients varied from 0.05 (grains, N = 13) to 1.85 (corn silage, N = 3) and increased with the maturity of the grasses from 0.88 (legumes, vegetative cool season grasses, N = 26) to 1.33 (mature, cool season grasses, N = 19). Predicted PDF were closely correlated (r > 0.9, P < 0.01) to in vitro cell wall disappearances (IVCWD). Apparently digestible cell wall in four grasses and four legumes increased linearly with 96-h IVCWD and standard error (SE) was similar to the SE of predicted apparent digestible SOL from SOL concentrations. Assuming that similarity between SE could be also observed in larger samples, PDF and SOL were used in summative equations to predict apparent dry matter digestibility. DDM1 discounted for intake (DDM1 – 4, %) was regressed against SOL and PDF concentrations of 87 feeds:[Formula: see text]with ds and df, the true digestibilities of SOL and PDF. Estimates of ds and df were 0.98 and 0.95 for a zero-production (maintenance) level of intake, and 0.91 and 0.79 for an intake level four times maintenance. Since the true digestibility of the PDF component was only 4% – 13% lower than that of the cell soluble component, the concentration of PDF in cell wall was the major determinant in the variation in apparent digestibility of forages. Key words: lignin, neutral detergent fiber, true digestibility, cluster analysis, feeds


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Guadalupe Villa-Rivera ◽  
Horacio Cano-Camacho ◽  
Everardo López-Romero ◽  
María Guadalupe Zavala-Páramo

Arabinogalactans (AGs) are structural polysaccharides of the plant cell wall. A small proportion of the AGs are associated with hemicellulose and pectin. Furthermore, AGs are associated with proteins forming the so-called arabinogalactan proteins (AGPs), which can be found in the plant cell wall or attached through a glycosylphosphatidylinositol (GPI) anchor to the plasma membrane. AGPs are a family of highly glycosylated proteins grouped with cell wall proteins rich in hydroxyproline. These glycoproteins have important and diverse functions in plants, such as growth, cellular differentiation, signaling, and microbe-plant interactions, and several reports suggest that carbohydrate components are crucial for AGP functions. In beneficial plant-microbe interactions, AGPs attract symbiotic species of fungi or bacteria, promote the development of infectious structures and the colonization of root tips, and furthermore, these interactions can activate plant defense mechanisms. On the other hand, plants secrete and accumulate AGPs at infection sites, creating cross-links with pectin. As part of the plant cell wall degradation machinery, beneficial and pathogenic fungi and bacteria can produce the enzymes necessary for the complete depolymerization of AGs including endo-β-(1,3), β-(1,4) and β-(1,6)-galactanases, β-(1,3/1,6) galactanases, α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases. These hydrolytic enzymes are secreted during plant-pathogen interactions and could have implications for the function of AGPs. It has been proposed that AGPs could prevent infection by pathogenic microorganisms because their degradation products generated by hydrolytic enzymes of pathogens function as damage-associated molecular patterns (DAMPs) eliciting the plant defense response. In this review, we describe the structure and function of AGs and AGPs as components of the plant cell wall. Additionally, we describe the set of enzymes secreted by microorganisms to degrade AGs from AGPs and its possible implication for plant-microbe interactions.


1995 ◽  
Vol 44 (Suppl. 1) ◽  
pp. 34-34
Author(s):  
HG Jung ◽  
TA Morrison ◽  
DR Buxton

Sign in / Sign up

Export Citation Format

Share Document