shikimate pathway
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 100)

H-INDEX

45
(FIVE YEARS 5)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 86
Author(s):  
Songwei Wang ◽  
Dongliang Liu ◽  
Muhammad Bilal ◽  
Wei Wang ◽  
Xuehong Zhang

DAHP synthase catalyzes the first step in the shikimate pathway, deriving the biosynthesis of aromatic amino acids (Trp, Phe and Tyr), phenazine-1-carboxamide, folic acid, and ubiquinone in Pseudomonas chlororaphis. In this study, we identified and characterized one DAHP synthase encoding gene phzC, which differs from the reported DAHP synthase encoding genes aroF, aroG and aroH in E. coli. PhzC accounts for approximately 90% of the total DAHP synthase activities in P. chlororaphis HT66 and plays the most critical role in four DAHP synthases in the shikimate pathway. Inactivation of phzC resulted in the reduction of PCN production by more than 90%, while the absence of genes aroF, aroG and aroH reduced PCN yield by less than 15%, and the production of PCN was restored after the complementation of gene phzC. Moreover, the results showed that phzC in P. chlororaphis HT66 is not sensitive to feedback inhibition. This study demonstrated that gene phzC is essential for PCN biosynthesis. The expression level of both phzC and phzE genes are not inhibited in feedback by PCN production due to the absence of a loop region required for allosteric control reaction. This study highlighted the importance of PhzC and applying P. chlororaphis for shikimate pathway-derived high-value biological production.


Botany ◽  
2021 ◽  
Author(s):  
Larisse Freitas-Silva ◽  
Hugo Humberto de Araújo ◽  
Camila Santos Meireles ◽  
Luzimar Campos da Silva

Chemical weed control is essential to ensure high levels of productivity in agricultural areas, and glyphosate-based herbicides (GBHs) are the most widely used herbicides at a global scale. GBHs inhibit the 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) enzyme, which impairs the shikimate pathway and often leads to plant death. However, indirect effects of GBHs on plant physiology can also lead to plant death. The objectives of this review are to discuss the biochemical, physiological and structural changes GBH application produces in plant species, in addition to inhibiting EPSPS (EC 2.5.1.19), and to reveal how these changes contribute to plant death. We conclude that GBHs promote plant death not only because of EPSPS inhibition but also due to biochemical, physiological and structural changes. Some changes are recurrent and can be used as biomarkers of GBH sensitivity, which can contribute to future works that monitor the presence of these herbicides in plant communities near agricultural areas.


2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Mario Alejandro Duque-Villegas ◽  
Bruno Lopes Abbadi ◽  
Paulo Ricardo Romero ◽  
Letícia Beatriz Matter ◽  
Luiza Galina ◽  
...  

We found that cells from Mycobacterium smegmatis , a model organism safer and easier to study than the disease-causing mycobacterial species, when depleted of an enzyme from the shikimate pathway, are auxotrophic for the three aromatic amino acids (AroAAs) that serve as building blocks of cellular proteins: l- tryptophan, l -phenylalanine, and l -tyrosine. That supplementation with only AroAAs is sufficient to rescue viable cells with the shikimate pathway inactivated was unexpected, since this pathway produces an end product, chorismate, that is the starting compound of essential pathways other than the ones that produce AroAAs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Mei ◽  
Shihua Wan ◽  
Chuyuan Lin ◽  
Caibi Zhou ◽  
Liuhong Hu ◽  
...  

Tea (Camellia sinensis) flowers are normally white, even though the leaves could be purple. We previously discovered a specific variety with purple leaves and flowers. In the face of such a phenomenon, researchers usually focus on the mechanism of color formation but ignore the change of aroma. The purple tea flowers contain more anthocyanins, which belong to flavonoids. Meanwhile, phenylalanine (Phe), derived from the shikimate pathway, is a precursor for both flavonoids and volatile benzenoid–phenylpropanoids (BPs). Thus, it is not clear whether the BP aroma was attenuated for the appearance of purple color. In this study, we integrated metabolome and transcriptome of petals of two tea varieties, namely, Zijuan (ZJ) with white flowers and Baitang (BT) with purple flowers, to reveal the relationship between color (anthocyanins) and aroma (volatile BPs). The results indicated that in purple petals, the upstream shikimate pathway promoted for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) was elevated. Among the increased anthocyanins, delphinidin-3-O-glucoside (DpG) was extremely higher; volatile BPs, including benzyl aldehyde, benzyl alcohol, acetophenone (AP), 1-phenylethanol, and 2-phenylethanol, were also enhanced, and AP was largely elevated. The structural genes related to the biosynthesis of volatile BPs were induced, while the whole flavonoid biosynthesis pathway was downregulated, except for the genes flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H), which were highly expressed to shift the carbon flux to delphinidin, which was then conjugated to glucoside by increased bronze-1 (BZ1) (UDP-glucose: flavonoid 3-O-glucosyltransferase) to form DpG. Transcription factors (TFs) highly related to AP and DpG were selected to investigate their correlation with the differentially expressed structural genes. TFs, such as MYB, AP2/ERF, bZIP, TCP, and GATA, were dramatically expressed and focused on the regulation of genes in the upstream synthesis of Phe (DAHPS; arogenate dehydratase/prephenatedehydratase) and the synthesis of AP (phenylacetaldehyde reductase; short-chain dehydrogenase/reductase), Dp (F3′H; F3′5′H), and DpG (BZ1), but inhibited the formation of flavones (flavonol synthase) and catechins (leucoanthocyanidin reductase). These results discovered an unexpected promotion of volatile BPs in purple tea flowers and extended our understanding of the relationship between the BP-type color and aroma in the tea plant.


2021 ◽  
Vol 22 (22) ◽  
pp. 12606
Author(s):  
Marianna Marino ◽  
Elena Mele ◽  
Andrea Viggiano ◽  
Stefania Lucia Nori ◽  
Rosaria Meccariello ◽  
...  

Glyphosate is widely used worldwide as a potent herbicide. Due to its ubiquitous use, it is detectable in air, water and foodstuffs and can accumulate in human biological fluids and tissues representing a severe human health risk. In plants, glyphosate acts as an inhibitor of the shikimate pathway, which is absent in vertebrates. Due to this, international scientific authorities have long-considered glyphosate as a compound that has no or weak toxicity in humans. However, increasing evidence has highlighted the toxicity of glyphosate and its formulations in animals and human cells and tissues. Thus, despite the extension of the authorization of the use of glyphosate in Europe until 2022, several countries have begun to take precautionary measures to reduce its diffusion. Glyphosate has been detected in urine, blood and maternal milk and has been found to induce the generation of reactive oxygen species (ROS) and several cytotoxic and genotoxic effects in vitro and in animal models directly or indirectly through its metabolite, aminomethylphosphonic acid (AMPA). This review aims to summarize the more relevant findings on the biological effects and underlying molecular mechanisms of glyphosate, with a particular focus on glyphosate's potential to induce inflammation, DNA damage and alterations in gene expression profiles as well as adverse effects on reproduction and development.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3079
Author(s):  
Loïse Serra ◽  
Anthony Estienne ◽  
Claudine Vasseur ◽  
Pascal Froment ◽  
Joëlle Dupont

Glyphosate (G), also known as N-(phosphonomethyl)glycine is the declared active ingredient of glyphosate-based herbicides (GBHs) such as Roundup largely used in conventional agriculture. It is always used mixed with formulants. G acts in particular on the shikimate pathway, which exists in bacteria, for aromatic amino acids synthesis, but this pathway does not exist in vertebrates. In recent decades, researchers have shown by using various animal models that GBHs are endocrine disruptors that might alter reproductive functions. Our review describes the effects of exposure to G or GBHs on the hypothalamic–pituitary–gonadal (HPG) axis in males and females in terms of endocrine disruption, cell viability, and proliferation. Most of the main regulators of the reproductive axis (GPR54, GnRH, LH, FSH, estradiol, testosterone) are altered at all levels of the HPG axis (hypothalamus, pituitary, ovaries, testis, placenta, uterus) by exposure to GBHs which are considered more toxic than G alone due to the presence of formulants such as polyoxyethylene tallow amine (POEA).” In addition, we report intergenerational impacts of exposure to G or GBHs and, finally, we discuss different strategies to reduce the negative effects of GBHs on fertility.


2021 ◽  
Author(s):  
Swastika Maity ◽  
Manas Kinra ◽  
Madhavan Nampoothiri ◽  
Devinder Arora ◽  
K. Sreedhara Ranganath Pai ◽  
...  

AbstractIncreased effectiveness and decreasing toxicity are prime objectives in drug research. Overwhelming evidence suggests the use of appropriate combination therapy for the better efficacy of drugs owing to their synergistic profile. Dietary active constituents play a major role in health outcomes. Therefore, it is possible to increase the effectiveness of the drug by combining contemporary medication with active natural/semi-synthetic constituents. One such dietary constituent, caffeic acid (CA), is a by-product of the shikimate pathway in plants and is a polyphenol of hydroxycinnamic acid class. Extensive research on CA has proposed its efficacy against inflammatory, neurodegenerative, oncologic, and metabolic disorders. The synergistic/additive effects of CA in combination with drugs like caffeine, metformin, pioglitazone, and quercetin have been reported in several experimental models and thus the present review is an attempt to consolidate outcomes of this research. Multi-target-based mechanistic studies will facilitate the development of effective combination regimens of CA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nestor Fernandez Del-Saz ◽  
Cyril Douthe ◽  
Marc Carriquí ◽  
Jose Ortíz ◽  
Carolina Sanhueza ◽  
...  

The alternative oxidase pathway (AOP) is associated with excess energy dissipation in leaves of terrestrial plants. To address whether this association is less important in palustrine plants, we compared the role of AOP in balancing energy and carbon metabolism in palustrine and terrestrial environments by identifying metabolic relationships between primary carbon metabolites and AOP in each habitat. We measured oxygen isotope discrimination during respiration, gas exchange, and metabolite profiles in aerial leaves of ten fern and angiosperm species belonging to five families organized as pairs of palustrine and terrestrial species. We performed a partial least square model combined with variable importance for projection to reveal relationships between the electron partitioning to the AOP (τa) and metabolite levels. Terrestrial plants showed higher values of net photosynthesis (AN) and τa, together with stronger metabolic relationships between τa and sugars, important for water conservation. Palustrine plants showed relationships between τa and metabolites related to the shikimate pathway and the GABA shunt, to be important for heterophylly. Excess energy dissipation via AOX is less crucial in palustrine environments than on land. The basis of this difference resides in the contrasting photosynthetic performance observed in each environment, thus reinforcing the importance of AOP for photosynthesis.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Shin-Won Lee ◽  
Han Kim ◽  
Joong-Hoon Ahn

AbstractHydroxycinnamic acids (HCs) are natural compounds that form conjugates with diverse compounds in nature. Ethyl caffeate (EC) is a conjugate of caffeic acid (an HC) and ethanol. It has been found in several plants, including Prunus yedoensis, Polygonum amplexicaule, and Ligularia fischeri. Although it exhibits anticancer, anti-inflammatory, and antifibrotic activities, its biosynthetic pathway in plants still remains unknown. This study aimed to design an EC synthesis pathway and clone genes relevant to the same. Genes involved in the caffeic acid synthesis pathway (tyrosine ammonia-lyase (TAL) and p-coumaric acid hydroxylase (HpaBC)) were introduced into Escherichia coli along with 4-coumaroyl CoA ligase (4CL) and acyltransferases (AtCAT) cloned from Arabidopsis thaliana. In presence of ethanol, E. coli harboring the above genes successfully synthesized EC. Providing more tyrosine through the overexpression of shikimate-pathway gene-module construct and using E. coli mutant enhanced EC yield; approximately 116.7 mg/L EC could be synthesized in the process. Synthesis of four more alkyl caffeates was confirmed in this study; these might potentially possess novel biological properties, which would require further investigation.


2021 ◽  
Vol 22 (19) ◽  
pp. 10374
Author(s):  
Renata de A. B. Assis ◽  
Cíntia H. D. Sagawa ◽  
Paulo A. Zaini ◽  
Houston J. Saxe ◽  
Phillip A. Wilmarth ◽  
...  

Walnut blight is a significant above-ground disease of walnuts caused by Xanthomonas arboricola pv. juglandis (Xaj). The secreted form of chorismate mutase (CM), a key enzyme of the shikimate pathway regulating plant immunity, is highly conserved between plant-associated beta and gamma proteobacteria including phytopathogens belonging to the Xanthomonadaceae family. To define its role in walnut blight disease, a dysfunctional mutant of chorismate mutase was created in a copper resistant strain Xaj417 (XajCM). Infections of immature walnut Juglans regia (Jr) fruit with XajCM were hypervirulent compared with infections with the wildtype Xaj417 strain. The in vitro growth rate, size and cellular morphology were similar between the wild-type and XajCM mutant strains, however the quantification of bacterial cells by dPCR within walnut hull tissues showed a 27% increase in XajCM seven days post-infection. To define the mechanism of hypervirulence, proteome analysis was conducted to compare walnut hull tissues inoculated with the wild type to those inoculated with the XajCM mutant strain. Proteome analysis revealed 3296 Jr proteins (five decreased and ten increased with FDR ≤ 0.05) and 676 Xaj417 proteins (235 increased in XajCM with FDR ≤ 0.05). Interestingly, the most abundant protein in Xaj was a polygalacturonase, while in Jr it was a polygalacturonase inhibitor. These results suggest that this secreted chorismate mutase may be an important virulence suppressor gene that regulates Xaj417 virulence response, allowing for improved bacterial survival in the plant tissues.


Sign in / Sign up

Export Citation Format

Share Document