scholarly journals Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target

2020 ◽  
Vol 19 (12) ◽  
pp. 2068-2089
Author(s):  
Alison M. Kurimchak ◽  
Vikas Kumar ◽  
Carlos Herrera-Montávez ◽  
Katherine J. Johnson ◽  
Nishi Srivastava ◽  
...  

Endometrial carcinoma (EC) is the most common gynecologic malignancy in the United States, with limited effective targeted therapies. Endometrial tumors exhibit frequent alterations in protein kinases, yet only a small fraction of the kinome has been therapeutically explored. To identify kinase therapeutic avenues for EC, we profiled the kinome of endometrial tumors and normal endometrial tissues using Multiplexed Inhibitor Beads and Mass Spectrometry (MIB-MS). Our proteomics analysis identified a network of kinases overexpressed in tumors, including Serine/Arginine-Rich Splicing Factor Kinase 1 (SRPK1). Immunohistochemical (IHC) analysis of endometrial tumors confirmed MIB-MS findings and showed SRPK1 protein levels were highly expressed in endometrioid and uterine serous cancer (USC) histological subtypes. Moreover, querying large-scale genomics studies of EC tumors revealed high expression of SRPK1 correlated with poor survival. Loss-of-function studies targeting SRPK1 in an established USC cell line demonstrated SRPK1 was integral for RNA splicing, as well as cell cycle progression and survival under nutrient deficient conditions. Profiling of USC cells identified a compensatory response to SRPK1 inhibition that involved EGFR and the up-regulation of IGF1R and downstream AKT signaling. Co-targeting SRPK1 and EGFR or IGF1R synergistically enhanced growth inhibition in serous and endometrioid cell lines, representing a promising combination therapy for EC.

Blood ◽  
2011 ◽  
Vol 118 (3) ◽  
pp. 723-735 ◽  
Author(s):  
Hedia Chagraoui ◽  
Mira Kassouf ◽  
Sreemoti Banerjee ◽  
Nicolas Goardon ◽  
Kevin Clark ◽  
...  

Abstract Megakaryopoiesis is a complex process that involves major cellular and nuclear changes and relies on controlled coordination of cellular proliferation and differentiation. These mechanisms are orchestrated in part by transcriptional regulators. The key hematopoietic transcription factor stem cell leukemia (SCL)/TAL1 is required in early hematopoietic progenitors for specification of the megakaryocytic lineage. These early functions have, so far, prevented full investigation of its role in megakaryocyte development in loss-of-function studies. Here, we report that SCL critically controls terminal megakaryocyte maturation. In vivo deletion of Scl specifically in the megakaryocytic lineage affects all key attributes of megakaryocyte progenitors (MkPs), namely, proliferation, ploidization, cytoplasmic maturation, and platelet release. Genome-wide expression analysis reveals increased expression of the cell-cycle regulator p21 in Scl-deleted MkPs. Importantly, p21 knockdown-mediated rescue of Scl-mutant MkPs shows full restoration of cell-cycle progression and partial rescue of the nuclear and cytoplasmic maturation defects. Therefore, SCL-mediated transcriptional control of p21 is essential for terminal maturation of MkPs. Our study provides a mechanistic link between a major hematopoietic transcriptional regulator, cell-cycle progression, and megakaryocytic differentiation.


Development ◽  
2001 ◽  
Vol 128 (9) ◽  
pp. 1687-1696 ◽  
Author(s):  
K. Halfar ◽  
C. Rommel ◽  
H. Stocker ◽  
E. Hafen

Ras mediates a plethora of cellular functions during development. In the developing eye of Drosophila, Ras performs three temporally separate functions. In dividing cells, it is required for growth but is not essential for cell cycle progression. In postmitotic cells, it promotes survival and subsequent differentiation of ommatidial cells. In the present paper, we have analyzed the different roles of Ras during eye development by using molecularly defined complete and partial loss-of-function mutations of Ras. We show that the three different functions of Ras are mediated by distinct thresholds of MAPK activity. Low MAPK activity prolongs cell survival and permits differentiation of R8 photoreceptor cells while high or persistent MAPK activity is sufficient to precociously induce R1-R7 photoreceptor differentiation in dividing cells.


2018 ◽  
Vol 38 (17) ◽  
Author(s):  
Shakhawoat Hossain ◽  
Hiroaki Iwasa ◽  
Aradhan Sarkar ◽  
Junichi Maruyama ◽  
Kyoko Arimoto-Matsuzaki ◽  
...  

ABSTRACT RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers, and its low expression level is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in a p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression by suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73 target genes via pRb and E2F1 in a p53-negative background. Finally, we confirmed that RASSF6 depletion induces polyploid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with loss of function of p53, and pRb is implicated in this function of RASSF6.


Sarcoma ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
J. W. Martin ◽  
M. Zielenska ◽  
G. S. Stein ◽  
A. J. van Wijnen ◽  
J. A. Squire

Osteosarcoma is an aggressive but ill-understood cancer of bone that predominantly affects adolescents. Its rarity and biological heterogeneity have limited studies of its molecular basis. In recent years, an important role has emerged for the RUNX2 “platform protein” in osteosarcoma oncogenesis. RUNX proteins are DNA-binding transcription factors that regulate the expression of multiple genes involved in cellular differentiation and cell-cycle progression. RUNX2 is genetically essential for developing bone and osteoblast maturation. Studies of osteosarcoma tumours have revealed that the RUNX2 DNA copy number together with RNA and protein levels are highly elevated in osteosarcoma tumors. The protein is also important for metastatic bone disease of prostate and breast cancers, while RUNX2 may have both tumor suppressive and oncogenic roles in bone morphogenesis. This paper provides a synopsis of the current understanding of the functions of RUNX2 and its potential role in osteosarcoma and suggests directions for future study.


2008 ◽  
Vol 28 (7) ◽  
pp. 2167-2174 ◽  
Author(s):  
Irena Ivanovska ◽  
Alexey S. Ball ◽  
Robert L. Diaz ◽  
Jill F. Magnus ◽  
Miho Kibukawa ◽  
...  

ABSTRACT microRNAs in the miR-106b family are overexpressed in multiple tumor types and are correlated with the expression of genes that regulate the cell cycle. Consistent with these observations, miR-106b family gain of function promotes cell cycle progression, whereas loss of function reverses this phenotype. Microarray profiling uncovers multiple targets of the family, including the cyclin-dependent kinase inhibitor p21/CDKN1A. We show that p21 is a direct target of miR-106b and that its silencing plays a key role in miR-106b-induced cell cycle phenotypes. We also show that miR-106b overrides a doxorubicin-induced DNA damage checkpoint. Thus, miR-106b family members contribute to tumor cell proliferation in part by regulating cell cycle progression and by modulating checkpoint functions.


2010 ◽  
Vol 10 ◽  
pp. 1001-1015 ◽  
Author(s):  
Chia-Hsin Chan ◽  
Szu-Wei Lee ◽  
Jing Wang ◽  
Hui-Kuan Lin

The regulation of cell cycle entry is critical for cell proliferation and tumorigenesis. One of the key players regulating cell cycle progression is the F-box protein Skp2. Skp2 forms a SCF complex with Skp1, Cul-1, and Rbx1 to constitute E3 ligase through its F-box domain. Skp2 protein levels are regulated during the cell cycle, and recent studies reveal that Skp2 stability, subcellular localization, and activity are regulated by its phosphorylation. Overexpression of Skp2 is associated with a variety of human cancers, indicating that Skp2 may contribute to the development of human cancers. The notion is supported by various genetic mouse models that demonstrate an oncogenic activity of Skp2 and its requirement in cancer progression, suggesting that Skp2 may be a novel and attractive therapeutic target for cancers.


2018 ◽  
Author(s):  
Shakhawoat Hossain ◽  
Hiroaki Iwasa ◽  
Aradhan Sarkar ◽  
Junichi Maruyama ◽  
Kyoko Arimoto-Matsuzaki ◽  
...  

ABSTRACTRASSF6 is a member of the tumor suppressor Ras-association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers and its low expression is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in the p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we have revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression through suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73-target genes via pRb and E2F1 in the p53-negative background. Finally, we confirmed that RASSF6 depletion induces polypoid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with the loss-of-function of p53, and pRb is implicated in this function of RASSF6.


2021 ◽  
Vol 22 (16) ◽  
pp. 8508
Author(s):  
Ainsley Mike Antao ◽  
Kamini Kaushal ◽  
Soumyadip Das ◽  
Vijai Singh ◽  
Bharathi Suresh ◽  
...  

Deubiquitinating enzymes play key roles in the precise modulation of Aurora B—an essential cell cycle regulator. The expression of Aurora B increases before the onset of mitosis and decreases during mitotic exit; an imbalance in these levels has a severe impact on the fate of the cell cycle. Dysregulation of Aurora B can lead to aberrant chromosomal segregation and accumulation of errors during mitosis, eventually resulting in cytokinesis failure. Thus, it is essential to identify the precise regulatory mechanisms that modulate Aurora B levels during the cell division cycle. Using a deubiquitinase knockout strategy, we identified USP48 as an important candidate that can regulate Aurora B protein levels during the normal cell cycle. Here, we report that USP48 interacts with and stabilizes the Aurora B protein. Furthermore, we showed that the deubiquitinating activity of USP48 helps to maintain the steady-state levels of Aurora B protein by regulating its half-life. Finally, USP48 knockout resulted in delayed progression of cell cycle due to accumulation of mitotic defects and ultimately cytokinesis failure, suggesting the role of USP48 in cell cycle regulation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 643-643 ◽  
Author(s):  
Francesco A. Piazza ◽  
Maria Ruzzene ◽  
Giovanni Di Maira ◽  
Enrico Brunetta ◽  
Luca Bonanni ◽  
...  

Abstract Survival and proliferation of Multiple Myeloma plasma cells (MMPCs) depend on the activation of signaling pathways through the interaction with the surrounding bone marrow microenvironment. CK2 is a ubiquitous cellular serine-threonine kinase, whose involvement in oncogenic transformation, apoptosis and cell cycle progression has recently become matter of intense research. Due to its connection with signaling molecules pivotal for plasma cell (PCs) survival, such as those implicated in the TNF-α/NF-κB, IGF1/PI3K/AKT and Wnt/β-catenin pathways, CK2 is likely to play a central role in MM biology. We investigated CK2 function in MMPCs survival and cell cycle progression, in the modulation of the sensitivity to chemotherapeutics and in the regulation of the I-κB/NF-κB dependent pathway. We first analysed the CK2 protein levels and specific kinase activity in MMPCs. Different cell lines and highly purified CD138+ PCs from 5 patients were used. We observed higher protein levels of the CK2 catalytic subunit αin the neoplastic MMPCs than in controls (resting peripheral blood and splenic B lymphocytes). Moreover, also the total CK2-dependent kinase activity was found significantly increased in MMPCs. We also assessed the levels and pattern of total protein phosphorylation by radioactive phosphate incorporation assay. We found that MMPCs share a similar pattern of phoshorylated proteins. The degree of phosphorylation of some of these proteins was significantly reduced in the presence of specific CK2 inhibitors. Next, using a panel of highly specific CK2 inhibitors, we studied the effects of hampering CK2 function in MMPCs. A dose-dependent cytotoxic effect was observed after the treatment with such compounds that was associated with the activation of both the extrinsic and intrinsic caspase-dependent pathways, the release from mitochondria of cytochrome c and smac/diablo and cell cycle arrest in G2-M. A possible role for CK2 inhibition in sensitising MMPCs to melphalan-induced apoptosis was also investigated. Indeed, CK2 blockade lowered the threshold of sensitivity of MMPCs to the cytotoxic effect of melphalan. We then looked at the consequences of CK2 blockade on the NF-κB dependent signaling cascade. Basal and TNF-α-dependent I-κB-αdegradation, as well as NF-κB transcriptional activity upon TNF-αstimulation, were partially impaired by CK2 blockade in MMPCs. Finally, we detected association between the endogenous αcatalytic subunit of CK2 and the NF-κB p50/p105 member by confocal microscopy and co-immunoprecipitation. Altogether, our data suggest a pivotal role for CK2 in controlling survival, proliferation and sensitivity to chemotherapeutics of MMPCs and implicate this kinase in the regulation of the NF-κB pathway in MM through the modulation of I-κB protein levels and NF-κB transcriptional activity. This latter effect is possibly exerted through physical association of CK2 with NF-κB transcription factors. Our findings also suggest that CK2 inhibition could be exploited as a novel therapeutic approach for MM.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 255-255
Author(s):  
John Anto Pulikkan ◽  
Viola Dengler ◽  
Philomina Sona Peramangalam ◽  
Abdul A. Peer Zada ◽  
Carsten Müller tidow ◽  
...  

Abstract Abstract 255 Transcription factor CCAAT enhancer binding protein α (C/EBPα) functions as a master regulator of granulocyte development by co-ordinating cell cycle inhibition and differentiation. Recent findings demonstrate that deregulation of C/EBPα is a critical step in the development of acute myeloid leukemia (AML). Inhibition of E2F1, the key regulator of cell cycle progression by C/EBPα is essential for granulopoiesis and disruption of this function of C/EBPα leads to leukemia. The mechanism with which C/EBPα inhibits E2F1 in granulopoiesis is poorly understood. Recent advances in our understanding about microRNAs suggest that these molecules have profound impact in gene expression programmes. Also, deregulation of microRNAs has been shown as a hall mark of many cancers including leukemia. microRNA-223 (miR-223) is upregulated by C/EBPα during granulopoiesis. The pivotal role of miR-223 in granulopoiesis is shown by the finding that mice deficient for miR-223 display defects in granulopoiesis. In this study, we explored the role of miR-223 in the cell cycle inhibition function of C/EBPα. Computational analysis by using programmes such as Target Scan suggests that E2F1 is a putative target of miR-223. Luciferase assays using 3'UTR of E2F1 suggest E2F1 is a potential target of miR-223. Western blot analysis using bone marrow cells isolated from miR-223 null mice shows accumulation of E2F1 protein levels. Interestingly, E2F1 protein levels were downregulated during miR-223 overexpression in myeloid cells. Analysis of miR-223 by quantitative Real-Time RT-PCR in AML patient samples shows that miR-223 is downregulated in different subtypes of AML. Proliferation assays, cell cycle analysis and BrdU assays show that miR-223 functions as an inhibitor of myeloid cell cycle progression. Several studies have reported the ability of E2F1 to block granulocytic differentiation. We next analysed whether E2F1 is inhibiting myeloid differentiation through miR-223. Promoter assays show that E2F1 inhibits the miR-223 promoter activity. By using Chromatin immunoprecipitation assays, we found that E2F1 binds to miR-223 promoter in leukemia derived cell lines and this binding is reversed during granulocytic differentiation. We also observed that E2F1 is bound to the miR-223 promoter in blast cells isolated from AML patients as analysed by chromatin immunoprecipitation assays. In addition, we show that overexpression of E2F1 leads to down regulation of miR-223 levels in myeloid cells. All these data suggest that E2F1 functions as a transcriptional repressor of the miR-223 gene. Taken together, our data suggest that granulopoiesis is regulated by the interplay between miR-223 and E2F1 and deregulation of this interplay may lead to the development of AML. Overexpression of miR-223 could be a potential strategy in the treatment of AML patients in which E2F1 inhibition by C/EBPα is deregulated. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document