transcriptional control
Recently Published Documents


TOTAL DOCUMENTS

3178
(FIVE YEARS 549)

H-INDEX

145
(FIVE YEARS 12)

2022 ◽  
Vol 8 ◽  
Author(s):  
Eric Schoger ◽  
Sara Lelek ◽  
Daniela Panáková ◽  
Laura Cecilia Zelarayán

Molecular and genetic differences between individual cells within tissues underlie cellular heterogeneities defining organ physiology and function in homeostasis as well as in disease states. Transcriptional control of endogenous gene expression has been intensively studied for decades. Thanks to a fast-developing field of single cell genomics, we are facing an unprecedented leap in information available pertaining organ biology offering a comprehensive overview. The single-cell technologies that arose aided in resolving the precise cellular composition of many organ systems in the past years. Importantly, when applied to diseased tissues, the novel approaches have been immensely improving our understanding of the underlying pathophysiology of common human diseases. With this information, precise prediction of regulatory elements controlling gene expression upon perturbations in a given cell type or a specific context will be realistic. Simultaneously, the technological advances in CRISPR-mediated regulation of gene transcription as well as their application in the context of epigenome modulation, have opened up novel avenues for targeted therapy and personalized medicine. Here, we discuss the fast-paced advancements during the recent years and the applications thereof in the context of cardiac biology and common cardiac disease. The combination of single cell technologies and the deep knowledge of fundamental biology of the diseased heart together with the CRISPR-mediated modulation of gene regulatory networks will be instrumental in tailoring the right strategies for personalized and precision medicine in the near future. In this review, we provide a brief overview of how single cell transcriptomics has advanced our knowledge and paved the way for emerging CRISPR/Cas9-technologies in clinical applications in cardiac biomedicine.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 279
Author(s):  
Zhi-Liang Zheng

Cell cycle control is vital for cell proliferation in all eukaryotic organisms. The entire cell cycle can be conceptually separated into four distinct phases, Gap 1 (G1), DNA synthesis (S), G2, and mitosis (M), which progress sequentially. The precise control of transcription, in particular, at the G1 to S and G2 to M transitions, is crucial for the synthesis of many phase-specific proteins, to ensure orderly progression throughout the cell cycle. This mini-review highlights highly conserved transcriptional regulators that are shared in budding yeast (Saccharomyces cerevisiae), Arabidopsis thaliana model plant, and humans, which have been separated for more than a billion years of evolution. These include structurally and/or functionally conserved regulators cyclin-dependent kinases (CDKs), RNA polymerase II C-terminal domain (CTD) phosphatases, and the classical versus shortcut models of Pol II transcriptional control. A few of CDKs and CTD phosphatases counteract to control the Pol II CTD Ser phosphorylation codes and are considered critical regulators of Pol II transcriptional process from initiation to elongation and termination. The functions of plant-unique CDKs and CTD phosphatases in relation to cell division are also briefly summarized. Future studies towards testing a cooperative transcriptional mechanism, which is proposed here and involves sequence-specific transcription factors and the shortcut model of Pol II CTD code modulation, across the three eukaryotic kingdoms will reveal how individual organisms achieve the most productive, large-scale transcription of phase-specific genes required for orderly progression throughout the entire cell cycle.


2022 ◽  
Vol 23 (2) ◽  
pp. 741
Author(s):  
María Carcelén ◽  
Carlos Velásquez ◽  
Veronica Vidal ◽  
Olga Gutierrez ◽  
Jose L. Fernandez-Luna

Background: Glioblastoma (GBM) remains a major clinical challenge due to its invasive capacity, resistance to treatment, and recurrence. We have previously shown that ODZ1 contributes to glioblastoma invasion and that ODZ1 mRNA levels can be upregulated by epigenetic mechanisms in response to hypoxia. Herein, we have further studied the transcriptional regulation of ODZ1 in GBM stem cells (GSCs) under hypoxic conditions and analyzed whether HIF2α has any role in this regulation. Methods: We performed the experiments in three primary GSC cell lines established from tumor specimens. GSCs were cultured under hypoxia, treated with HIF regulators (DMOG, chetomin), or transfected with specific siRNAs, and the expression levels of ODZ1 and HIF2α were analyzed. In addition, the response of the ODZ1 promoter cloned into a luciferase reporter plasmid to the activation of HIF was also studied. Results: The upregulation of both mRNA and protein levels of HIF2α under hypoxia conditions correlated with the expression of ODZ1 mRNA. Moreover, the knockdown of HIF2α by siRNAs downregulated the expression of ODZ1. We found, in the ODZ1 promoter, a HIF consensus binding site (GCGTG) 1358 bp from the transcription start site (TSS) and a HIF-like site (CCGTG) 826 bp from the TSS. Luciferase assays revealed that the stabilization of HIF by DMOG resulted in the increased activity of the ODZ1 promoter. Conclusions: Our data indicate that the HIF2α-mediated upregulation of ODZ1 helps strengthen the transcriptional control of this migration factor under hypoxia in glioblastoma stem cells. The discovery of this novel transcriptional pathway identifies new targets to develop strategies that may avoid GBM tumor invasion and recurrence.


2022 ◽  
Vol 12 ◽  
Author(s):  
Anissa Guillemin ◽  
Anuj Kumar ◽  
Mélanie Wencker ◽  
Emiliano P. Ricci

Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.


2022 ◽  
Vol 119 (3) ◽  
pp. e2117338119
Author(s):  
Rebecca B. Berlow ◽  
H. Jane Dyson ◽  
Peter E. Wright

Intrinsically disordered proteins must compete for binding to common regulatory targets to carry out their biological functions. Previously, we showed that the activation domains of two disordered proteins, the transcription factor HIF-1α and its negative regulator CITED2, function as a unidirectional, allosteric molecular switch to control transcription of critical adaptive genes under conditions of oxygen deprivation. These proteins achieve transcriptional control by competing for binding to the TAZ1 domain of the transcriptional coactivators CREB-binding protein (CBP) and p300 (CREB: cyclic-AMP response element binding protein). To characterize the mechanistic details behind this molecular switch, we used solution NMR spectroscopy and complementary biophysical methods to determine the contributions of individual binding motifs in CITED2 to the overall competition process. An N-terminal region of the CITED2 activation domain, which forms a helix when bound to TAZ1, plays a critical role in initiating competition with HIF-1α by enabling formation of a ternary complex in a process that is highly dependent on the dynamics and disorder of the competing partners. Two other conserved binding motifs in CITED2, the LPEL motif and an aromatic/hydrophobic motif that we term ϕC, function synergistically to enhance binding of CITED2 and inhibit rebinding of HIF-1α. The apparent unidirectionality of competition between HIF-1α and CITED2 is lost when one or more of these binding regions is altered by truncation or mutation of the CITED2 peptide. Our findings illustrate the complexity of molecular interactions involving disordered proteins containing multivalent interaction motifs and provide insight into the unique mechanisms by which disordered proteins compete for occupancy of common molecular targets within the cell.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 200
Author(s):  
Maria R. Pozo ◽  
Gantt W. Meredith ◽  
Emilia Entcheva

The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing—HDAC inhibitors (HDACi)—targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart.


2022 ◽  
Author(s):  
Jesus Ruiz-Leon ◽  
Annie Espinal-Centeno ◽  
Ikram Blilou ◽  
Ben Scheres ◽  
Mario Arteaga-Vazquez ◽  
...  

● Transposable elements and other repetitive elements are silenced by the RNA-directed DNA methylation pathway (RdDM). In RdDM, POLIV-derived transcripts are converted into double stranded RNA (dsRNA) by the activity of RDR2 and subsequently processed into 24 nucleotide short interfering RNAs (24-nt siRNAs) by DCL3. 24-nt siRNAs are recruited by AGO4 and serve as guides to direct AGO4-siRNA complexes to chromatin bound POLV-derived transcripts generated from the template/target DNA. The interaction between POLV, AGO4, DMS3, DRD1, RDM1 and DRM2 promotes DRM2-mediated de novo DNA methylation. In silico exploration of Arabidopsis RBR protein partners revealed that several members of the RdDM pathway contain a motif that confers high affinity binding to RBR, including the largest subunits of POLIV and POLV (NRPD1 and NRPE1), the shared second largest subunit of POLIV and POLV (NRPD/E2), RDR1, RDR2, DCL3, DRM2 and SUVR2. We demonstrate that RBR binds to DRM2, DRD1 and SUVR2. We also report that seedlings from loss-of-function mutants in RdDM and in RBR show similar phenotypes in the root apical meristem. Furthermore, we show that RdDM and SUVR2 targets are up-regulated in the 35S::AmiGO-RBR background. Our results suggest a novel mechanism for RBR function in transcriptional gene silencing based on the interaction with key players of the RdDM pathway and opens several new hypotheses, including the convergence of RBR-DRM2 on the transcriptional control of TEs and several cell/tissue and stage-specific target genes.


2022 ◽  
Author(s):  
Ishara S Ariyapala ◽  
Kasun Buddika ◽  
Heather A Hundley ◽  
Brian Calvi ◽  
Nicholas Sokol

The regulation of stem cell survival, self-renewal, and differentiation is critical for the maintenance of tissue homeostasis. Although the involvement of signaling pathways and transcriptional control mechanisms in stem cell regulation have been extensively investigated, the role of post-transcriptional control is still poorly understood. Here we show that the nuclear activity of the RNA-binding protein Second Mitotic Wave Missing (Swm) is critical for Drosophila intestinal stem cells (ISCs) and their daughter cells, enteroblasts (EBs), to maintain their identity and function. Loss of swm in these intestinal progenitor cells leads ISCs and EBs to lose defined cell identities, fail to proliferate, and detach from the basement membrane, resulting in severe progenitor cell loss. swm loss further causes nuclear accumulation of poly(A)+ RNA in progenitor cells. Swm associates with transcripts involved in epithelial cell maintenance and adhesion, and the loss of swm, while not generally affecting the levels of these Swm-bound mRNAs, leads to elevated expression of proteins encoded by some of them, including the fly orthologs of Filamin and Talin. Taken together, this study indicates a role for Swm in adult stem cell maintenance, and raises the possibility that nuclear post-transcriptional gene regulation plays vital roles in controlling adult stem cell maintenance and function.


2022 ◽  
Author(s):  
Shreeta Chakraborty ◽  
Nina Kopitchinski ◽  
Ariel Eraso ◽  
Parirokh Awasthi ◽  
Raj Chari ◽  
...  

Transcriptional control by distal enhancers is an integral feature of gene regulation. To understand how enhancer-promoter interactions arise and assess the impact of disrupting 3D chromatin structure on gene expression, we generated an allelic series of mouse mutants that perturb the physical structure of the Sox2 locus. We show that in the epiblast and in neuronal tissues, CTCF-mediated loops are neither required for the interaction of the Sox2 promoter with distal enhancers, nor for its expression. Insertion of various combinations of CTCF motifs between Sox2 and its distal enhancers generated ectopic loops with varying degrees of insulation that directly correlated with reduced transcriptional output. Yet, even the mutants exhibiting the strongest insulation, with six CTCF motifs in divergent orientation, could not fully abolish activation by distal enhancers, and failed to disrupt implantation and neurogenesis. In contrast, cells of the anterior foregut were more susceptible to chromatin structure disruption with no detectable SOX2 expression in mutants with the strongest CTCF-mediated boundaries. These animals phenocopied loss of SOX2 in the anterior foregut, failed to separate trachea from esophagus and died perinatally. We propose that baseline transcription levels and enhancer density may influence the tissue-specific ability of distal enhancers to overcome physical barriers and maintain faithful gene expression. Our work suggests that high affinity enhancer-promoter interactions that can overcome chromosomal structural perturbations, play an essential role in maintaining phenotypic robustness.


Sign in / Sign up

Export Citation Format

Share Document