scholarly journals Maintenance threonine requirement and efficiency of its use for accretion of whole-body threonine and protein in Atlantic salmon (Salmo salar L.) fry

2006 ◽  
Vol 95 (2) ◽  
pp. 234-245 ◽  
Author(s):  
Rollin Xavier ◽  
Jean-Baptiste Wauters ◽  
Noélie Bodin ◽  
Yvan Larondelle ◽  
Wilfried Ooghe ◽  
...  

Eighteen groups of seventy Atlantic salmon (Salmo salar L.) fry (initial mean body weight 0·8 (sd 0·01) g) were fed on semi-purified diets containing graded levels of l-threonine (Thr) in 15 litres aquaria at a temperature of 14·5±1°C. Doses of Thr represented 1, 31, 41, 51, 62, 72, 83 and 93% of its ideal level for optimumprotein deposition. Indispensable amino acids other than Thr were included in the same proportion (on a g/16g N basis) as in the Atlantic salmon fry whole-body carcass. Following 36d of feeding and a 36h fast, fry were killed for whole-body protein and amino acid analysis. Weight gain (r2 0·98), protein accretion (r2 0·97), and Thr accretion (r2 0·97) were linear (P<0·01) functions of Thr intake. Slope of the Thr accretion regression line showed that the efficiency of Thr utilisation above maintenance was 76%. At zero Thr intake, fry lost 5·4mg Thr/kg body weight0·75 per d. The Thr maintenance requirement was 7·2mg/kg body weight0·75 per d and the Thr requirement for growth was 66mg for 1g protein deposition. Increasing doses of Thr resulted in increased (P<0·05) concentrations of histidine and lysine, and decreased concentrations of isoleucine in whole-body protein. The maintenance need for Thr represented 13·4% of the total need for Thr. The data suggest that efficiency of Thr utilisation above maintenance is constant at all levels of Thr intake between 1 and 93% of the level required for optimum protein deposition.

1997 ◽  
Vol 78 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Hardy M Edwards III ◽  
David H Baker ◽  
Sergio R Fernandez ◽  
Carl M Parsons

Broiler chicks were fed on chemically-defined crystalline amino acid diets containing graded levels of L-threonine (Thr) during the period 10–20 d post-hatching. Doses of Thr represented 5,10,15,40,55,70 and 95% of its ideal level for maximal weight gain and feed efficiency. Other amino acids were maintained at minimized excess levels that were 15% (of ideal) above the various doses of Thr. Following 10d of feeding and a 24h fast, chicks were killed for whole-body protein and amino acid analysis. Using pen accretion means, weight gain (r20·98), protein accretion (r2 0·99), and Thr accretion (r2 0·99) were linear (P<0·01) functions of Thr intake. Slope of the Thr accretion regression line indicated that 82% of the Thr intake was recovered in whole-body protein. At zero Thr intake, chicks lost 11·9 mg Thr/d. The Thr maintenance requirement was 45·7 mg/d per kg body weight 0·75. Increasing doses of Thr resulted in increased (P<0·05) concentrations of methionine, isoleucine, histidine and lysine in whole-body protein. Other indispensable amino acids, including Thr, also tended to increase. Whole-body glycine, proline, serine and cystine concentrations decreased (P<0·05) as Thr was increased in the diet. The maintenance need for Thr represented 5·5% of the total need for Thr. The data suggest that efficiency of Thr utilization is constant at all levels of Thr intake between 5 and 95% of the level required for maximal weight gain and feed efficiency.


1981 ◽  
Vol 46 (3) ◽  
pp. 521-532 ◽  
Author(s):  
T. N. Barry

1. Male lambs that had been born in autumn and wintered on forage diets were cannulated in the abomasum, confined indoors in individual pens, and fed on fresh primary growth ryegrass (Lolium perenne) – clover (Trifolium repens) pasture ad lib, for a 12-week period during spring. Mean diet organic matter digestibility (OMD) was 0/76, nitrogen content 29 g/kg dry matter (DM) and metabolizable energy (ME) content 11.1 MJ/kg DM. Thirteen lambs were infused into the abomasum with 44 g sodium caseinate +0/5 g L-methionine/d and 12 lambs were similarly infused with equivalent amounts of inorganic sodium and phosphorus. Initial live weight was 16/5 kg.2. The twenty-five treatment lambs were slaughtered at the end of the experiment, and thirteen similar lambs were slaughtered when the experiment commenced. Body composition was determined and rates of protein, fat and energy deposition were calculated using comparative slaughter procedures.3. Voluntary herbage DOM intakes tended to be slightly greater for control than protein-infused lambs, but calculated ME intakes including that infused as amino acids were similar for the two groups. Live-weight gains were 79 and 99 g/d for control and protein-infused lambs respectively (P < 0/05) and corresponding values for carcass gain: live-weight gain were 0/44 and 0/50 (P < 0/01), Wool growth was markedly increased by the amino acid infusion.4. Carcass and whole body protein content was increased 10 g/kg by the protein infusion (P < 0/01) and fat content depressed approximately 25 g/kg (P < 0/05). Rates of protein deposition in both carcass and wool-free whole body were markedly increased by protein infusion, and total deposition including wool was 12.6 and 21.0 g/d for control and protein-infused lambs (P < 0/001). Energy deposited in protein as a proportion of total energy deposition was 0/27 and 0/41 for control and protein-infused lambs (P < 0/001), but total energy retention and the efficiency of utilization of ME for growth did not differ between the two groups of lambs.5. It was estimated that 60 and 100 g total amino acids/d were absorbed from the small intestine in the control and protein-infused lambs respectively, corresponding to 0.16 and 0/25 of total ME intake. It was concluded that absorption of protein from the small intestine was limiting protein deposition in the growing lambs fed on fresh ryegrass-based spring pasture in this study. Absorption of cystine+methionine was specifically shown to be limiting. However, the protein deficiency was not a major factor in the low value for the efficiency of utilization of ME for growth for this diet (0/30).


1978 ◽  
Vol 58 (3) ◽  
pp. 355-368 ◽  
Author(s):  
W. T. BUCKLEY ◽  
L. P. MILLIGAN

A method of estimating the rates of total protein synthesis, accretion and degradation in rats was investigated. Rats maintained on a continuous feeding regimen were given L-(U-14C) tyrosine and L-(U-14C) phenylalanine either with the diet or by continuous infusion while N consumption and excretion were measured. The percent of administered 14C expired as 14CO2 was used to calculate the rate of phenylalanine hydroxylation as well as the rate of phenylalanine incorporation into body protein according to a two-pool model of phenylalanine and protein metabolism. Finally, the whole body rates of protein synthesis, accretion and degradation in growing rats were calculated. All rats received 12 g of feed per day. Those that were given (14C) amino acids with the diet were growing at a mean rate of 3.0 g/day and had a mean body weight of 160 g. The mean rates of protein synthesis, accretion and degradation for these rats were 1.76, 0.74 and 1.02 g of protein/day, respectively. Rats that were given (14C) amino acids by continuous infusion were growing at a mean rate of 2.9 g/day and had a mean body weight of 123 g. The mean rates of protein synthesis, accretion and degradation in these rats were 1.39, 0.80 and 0.59 g protein/day, respectively.


1997 ◽  
Vol 128 (2) ◽  
pp. 233-246 ◽  
Author(s):  
S. A. NEUTZE ◽  
J. M. GOODEN ◽  
V. H. ODDY

This study used an experimental model, described in a companion paper, to examine the effects of feed intake on protein turnover in the small intestine of lambs. Ten male castrate lambs (∼ 10 months old) were offered, via continuous feeders, either 400 (n = 5) or 1200 (n = 5) g/day lucerne chaff, and mean experimental liveweights were 28 and 33 kg respectively. All lambs were prepared with catheters in the cranial mesenteric vein (CMV), femoral artery (FA), jugular vein and abomasum, and a blood flow probe around the CMV. Cr-EDTA (0·139 mg Cr/ml, ∼ 0·2 ml/min) was infused abomasally for 24 h and L-[2,6-3H]phenylalanine (Phe) (420±9·35 μCi into the abomasum) and L-[U-14C]phenylalanine (49·6±3·59 μCi into the jugular vein) were also infused during the last 8 h. Blood from the CMV and FA was sampled during the isotope infusions. At the end of infusions, lambs were killed and tissue (n = 4) and digesta (n = 2) samples removed from the small intestine (SI) of each animal. Transfers of labelled and unlabelled Phe were measured between SI tissue, its lumen and blood, enabling both fractional and absolute rates of protein synthesis and gain to be estimated.Total SI mass increased significantly with feed intake (P < 0·05), although not on a liveweight basis. Fractional rates of protein gain in the SI tended to increase (P = 0·12) with feed intake; these rates were −16·2 (±13·7) and 23·3 (±15·2) % per day in lambs offered 400 and 1200 g/day respectively. Mean protein synthesis and fractional synthesis rates (FSR), calculated from the mean retention of 14C and 3H in SI tissue, were both positively affected by feed intake (0·01 < P < 0·05). The choice of free Phe pool for estimating precursor specific radioactivity (SRA) for protein synthesis had a major effect on FSR. Assuming that tissue free Phe SRA represented precursor SRA, mean FSR were 81 (±15) and 145 (±24) % per day in lambs offered 400 and 1200 g/day respectively. Corresponding estimates for free Phe SRA in the FA and CMV were 28 (±2·9) and 42 (±3·5) % per day on 400 g/day, and 61 (±2·9) and 94 (±6·0) on 1200 g/day. The correct value for protein synthesis was therefore in doubt, although indirect evidence suggested that blood SRA (either FA or CMV) may be closest to true precursor SRA. This evidence included (i) comparison with flooding dose estimates of FSR, (ii) comparison of 3H[ratio ]14C Phe SRA in free Phe pools with this ratio in SI protein, and (iii) the proportion of SI energy use associated with protein synthesis.Using the experimental model, the proportion of small intestinal protein synthesis exported was estimated as 0·13–0·27 (depending on the choice of precursor) and was unaffected by feed intake. The contribution of the small intestine to whole body protein synthesis tended to be higher in lambs offered 1200 g/day (0·21) than in those offered 400 g/day (0·13). The data obtained in this study suggested a role for the small intestine in modulating amino acid supply with changes in feed intake. At high intake (1200 g/day), the small intestine increases in mass and CMV uptake of amino acids is less than absorption from the lumen, while at low intake (400 g/day), this organ loses mass and CMV uptake of amino acids exceeds that absorbed. The implications of these findings are discussed.


2018 ◽  
Vol 314 (5) ◽  
pp. E457-E467 ◽  
Author(s):  
Jorn Trommelen ◽  
Imre W. K. Kouw ◽  
Andrew M. Holwerda ◽  
Tim Snijders ◽  
Shona L. Halson ◽  
...  

The purpose of this study was to determine the impact of ingesting 30 g casein protein with and without 2 g free leucine before sleep on myofibrillar protein synthesis rates during postexercise overnight recovery. Thirty-six healthy young men performed a single bout of resistance-type exercise in the evening (1945) after a full day of dietary standardization. Thirty minutes before sleep (2330), subjects ingested 30 g intrinsically l-[1-13C]phenylalanine-labeled protein with (PRO+leu, n = 12) or without (PRO, n = 12) 2 g free leucine, or a noncaloric placebo (PLA, n = 12). Continuous intravenous l-[ ring-2H5]phenylalanine, l-[1-13C]leucine, and l-[ ring-2H2]tyrosine infusions were applied. Blood and muscle tissue samples were collected to assess whole body protein net balance, myofibrillar protein synthesis rates, and overnight incorporation of dietary protein-derived amino acids into myofibrillar protein. Protein ingestion before sleep improved overnight whole body protein net balance ( P < 0.001). Myofibrillar protein synthesis rates did not differ significantly between treatments as assessed by l-[ ring-2H5]phenylalanine (0.057 ± 0.002, 0.055 ± 0.002, and 0.055 ± 0.004%/h for PLA, PRO, and PRO+leu, respectively; means ± SE; P = 0.850) or l-[1-13C]leucine (0.080 ± 0.004, 0.073 ± 0.004, and 0.083 ± 0.006%/h, respectively; P = 0.328). Myofibrillar l-[1-13C]phenylalanine enrichments increased following protein ingestion but did not differ between the PRO and PRO+leu treatments. In conclusion, protein ingestion before sleep improves whole body protein net balance and provides amino acids that are incorporated into myofibrillar protein during sleep. However, the ingestion of 30 g casein protein with or without additional free leucine before sleep does not increase muscle protein synthesis rates during postexercise overnight recovery.


1998 ◽  
Vol 78 (1) ◽  
pp. 81-87 ◽  
Author(s):  
S. X. Huang ◽  
W. C. Sauer ◽  
M. Pickard ◽  
S. Li ◽  
R. T. Hardin

Studies were carried out to determine the effect of micronization on energy, starch and amino acid digestibilities in hulless barley. Six pigs (Canabrid × Camborough) were weaned at 21 d of age and fitted with a simple T-cannula at the distal ileum on days 23 or 24. The pigs were fed one of three diets with major constituents of hulless barley and soybean meal (HB + SBM), micronized hulless barley and soybean meal (MHB + SBM) and corn starch and soybean meal (C + SBM) according to a repeated Latin square design. The pigs were fed three times daily, equal amounts at 8-h intervals. The diets were supplied at a rate of 5% (wt/wt) of body weight. The average body weight of the pigs was 9.3 kg at start and 15.9 kg at the conclusion of the experiment at 58 d of age. Faeces were collected for 48 h on days 6 and 7 and ileal digesta for 24 h on days 8 and 9. Chromic oxide was used as digestibility marker. The apparent ileal amino acid digestibilities in HB and MHB were determined by the difference method. The apparent ileal digestibilities of the indispensable amino acids were higher in MHB than in HB and ranged from 5.3 to 10.0 percentage units. Of the indispensable amino acids, the differences were significant (P < 0.05) for arginine, histidine, isoleucine, phenylalanine and valine. Micronization of HB improved (P < 0.05) the ileal digestibility of starch from 79.0 to 97.3%. Micronization resulted in an increase in the digestion of energy in the small intestine and a decrease in microbial fermentation of energy in the large intestine. This shift in the disappearance of energy from the large to the small intestine should also result in an improvement in the efficiency of energy utilization. These studies show a positive effect of micronization on the digestibilities of energy and amino acids in young pigs fed HB. Key words: Micronization, barley, digestibility, pigs


Sign in / Sign up

Export Citation Format

Share Document