scholarly journals Measurement of soil water flux in andisols at a depth below a root zone of about 1 Meter

1994 ◽  
Vol 40 (1) ◽  
pp. 137-147 ◽  
Author(s):  
Shuichi Hasegawa ◽  
Seiko Osozawa ◽  
Hideto Ueno
1968 ◽  
Vol 60 (6) ◽  
pp. 625-629 ◽  
Author(s):  
M. E. LaRue ◽  
D. R. Nielsen ◽  
R. M. Hagan

2003 ◽  
Vol 46 (4) ◽  
pp. 489-498 ◽  
Author(s):  
Rogério Teixeira de Faria ◽  
Walter Truman Bowen

The performance of the soil water balance module (SWBM) in the models of DSSAT v3.5 was evaluated against soil moisture data measured in bare soil and dry bean plots, in Paraná, southern Brazil. Under bare soil, the SWBM showed a low performance to simulate soil moisture profiles due to inadequacies of the method used to calculate unsaturated soil water flux. Improved estimates were achieved by modifying the SWBM with the use of Darcy's equation to simulate soil water flux as a function of soil water potential gradient between consecutive soil layers. When used to simulate water balance for the bean crop, the modified SWBM improved soil moisture estimation but underpredicted crop yield. Root water uptake data indicated that assumptions on the original method limited plant water extraction for the soil in the study area. This was corrected by replacing empirical coefficients with measured values of soil hydraulic conductivity at different depths.


1998 ◽  
Author(s):  
W Bond

Measurements in and just below the plant root zone, using principles of soil physics, can be used to estimate recharge. This booklet describes the Zero Flux Plane Method, Methods Based on Darchy's law, and Lysimetry for making such estimates. The work presents the basic concepts of soil water physics that will be referred to in this and other booklets in the series. Another method, the Soil Water Flux Meter, is discussed briefly, but as this is not sufficiently well developed for routine use readers are referred elsewhere for full details. All these methods require that consideration be given to interpolation over time and spatial extrapolation or averaging. A brief discussion of this is given.


1988 ◽  
Vol 52 (5) ◽  
pp. 1215-1218 ◽  
Author(s):  
J.J.M. van Grinsven ◽  
H.W.G. Booltink ◽  
C. Dirksen ◽  
N. van Breemen ◽  
N. Bongers ◽  
...  

2017 ◽  
Vol 21 (8) ◽  
pp. 4053-4071 ◽  
Author(s):  
Nander Wever ◽  
Francesco Comola ◽  
Mathias Bavay ◽  
Michael Lehning

Abstract. The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in surface simulations exists and that the runoff dynamics are controlled by only a shallow soil layer. Runoff coefficients (i.e. ratio of rainfall over discharge) based on measurements for high rainfall and snowmelt events were found to be dependent on the simulated initial soil moisture state at the onset of an event, further illustrating the important role of soil moisture for the hydrological processes in the catchment. The runoff coefficients using simulated discharge were found to reproduce this dependency, which shows that the Alpine3D model framework can be successfully applied to assess the predisposition of the catchment to flood risks from both snowmelt and rainfall events.


Sign in / Sign up

Export Citation Format

Share Document