Ballistic penetration simulation of a 3D woven fabric using high strain-rate dependent yarn model

Author(s):  
Qingsong Wei ◽  
Dan Yang ◽  
Bo Gao
2010 ◽  
Vol 29 (1) ◽  
pp. 14-22 ◽  
Author(s):  
N.K. Naik ◽  
P. Yernamma ◽  
N.M. Thoram ◽  
R. Gadipatri ◽  
V.R. Kavala

2018 ◽  
Vol 53 (11) ◽  
pp. 1489-1506 ◽  
Author(s):  
Ankush P Sharma ◽  
Sanan H Khan ◽  
Venkitanarayanan Parameswaran

The tensile behavior of fiber metal laminates consisting of layers of aluminum 2024-T3 alloy and glass fiber reinforced composites under high strain rate loading is investigated. Fiber metal laminates having four different layups, but all having the same total metal layer thickness, were fabricated using a combined hand lay-up cum vacuum bagging method. The fiber metal laminate specimens were loaded in high strain rate tension using a split Hopkinson tensile bar. The rate-dependent behavior of the glass fiber composite was also obtained as baseline data. The strain on the gage area of the specimen was measured directly using high-speed digital image correlation. Another high-speed camera was used to capture the sequence of damage by viewing the specimen edgewise. The results indicated that the strength of the fiber metal laminates increased at high strain rates primarily due to the rate-dependent behavior of the composite used. The response was also influenced by the distribution of the metallic layers in the fiber metal laminates. The failure in the case where the individual composite layers were separated by metallic layers was more progressive in nature.


2010 ◽  
Vol 638-642 ◽  
pp. 3585-3590 ◽  
Author(s):  
Joost Van Slycken ◽  
Jérémie Bouquerel ◽  
Patricia Verleysen ◽  
Kim Verbeken ◽  
Joris Degrieck ◽  
...  

In this study, results are presented of an extensive experimental program to investigate the strain rate dependent mechanical properties of various Transformation Induced Plasticity (TRIP) steel grades. A split Hopkinson tensile bar setup was used for the high strain rate experiments and microstructural observation techniques such as LOM, SEM and EBSD revealed the mechanisms governing the observed behavior. With elevated testing temperatures and interrupted tensile experiments the material behavior and the austenite to martensite transformation is investigated. In dynamic conditions, the strain rate has limited influence on the material properties. Yet an important increase is noticed when comparing static to dynamic conditions. The differences in strength, elongation and energy absorption levels observed between the investigated materials can be attributed to their chemical composition. Adiabatic heating during high strain rate deformation tends to slow down the strain induced martensitic deformation. The elongation of the ferritic and austenite constituents is found to be strain rate dependent and the strain induced martensitic transformation occurs gradually in the material.


1996 ◽  
Vol 27 (2) ◽  
pp. 147-154 ◽  
Author(s):  
J. Rodriguez ◽  
I.S. Chocron ◽  
M.A. Martinez ◽  
V. Sánchez-Gálvez

2012 ◽  
Vol 83 (4) ◽  
pp. 337-354 ◽  
Author(s):  
Yangqing Hou ◽  
Lili Jiang ◽  
Baozhong Sun ◽  
Bohong Gu

The tensile behaviors of 3-D woven fabric under high strain-rate states, i.e. tensile impact behaviors, are important for the design of the fabrics and the reinforced composites under impulsive loading. This paper reports the testing and the numerical simulation of the impact tension behaviors of 3-D woven fabric under high strain rates compared with those under quasi-static tension. The tensile behaviors of 3-D orthogonal woven fabric (3DOWF) were investigated using a MTS 810.23 material testing system and a self-designed split Hopkinson tension bar apparatus, under a wide range of strain rates (0.003–2308/s). The tensile stress–strain curves obtained from the quasi-static and high strain rates were used to analyze the rate-sensitivity of 3DOWF tensile behaviors. It was found that both the tensile strength and the failure strain increased with increases in the strain rate. The two-phase tensile stiffness phenomenon of 3DOWF under high strain rates has been observed experimentally. A microstructure model combined with finite element analysis was established to explain the tensile failure mechanisms of 3DOWF under high strain rates. It was found that the fabric architecture influences the stress wave propagation, thus leading to the two-phase tensile stiffness phenomenon in the stress–strain curve under high strain-rate tensions.


Sign in / Sign up

Export Citation Format

Share Document