Rheological Properties of Heavy Oils and Heavy Oil Emulsions

1996 ◽  
Vol 18 (4) ◽  
pp. 385-391 ◽  
Author(s):  
M. RASHID KHAN
2017 ◽  
Vol 149 ◽  
pp. 522-530 ◽  
Author(s):  
Natalia M. Zadymova ◽  
Zoya N. Skvortsova ◽  
Vladimir Yu. Traskine ◽  
Fyodor A. Kulikov-Kostyushko ◽  
Valery G. Kulichikhin ◽  
...  

Author(s):  
Lyudmila A. Puldas ◽  
Igor R. Potochnyak ◽  
Olga A. Kuzina ◽  
Denis A. Vazhenin ◽  
Boris V. Grigoriev

One of the urgent problems in the extraction of hard-to-recover reserves (TRIZ) of oil is the formation of asphalt-resin-paraffin deposits (AFS) at oil fields, which entails a number of complications when extracting reserves from the subsoil. In solving the problems associated with the study of the mechanism of deposition of asphalt-resin-paraffin complexes on the downhole equipment or inside the reservoir, the leading role is played by laboratory studies with modeling of objects and conditions inherent in a particular field. In particular, it is necessary to prepare model solutions of hydrocarbons simulating downhole oil containing asphalt-resin-paraffin deposits. The purpose of this work was to establish by an experimental method the dependence of the rheological properties of model oil solutions on the amount of asphalt-resin-paraffin deposits dissolved in it, and to study the efficiency of displacing the prepared model oil solution from the bulk model of core with sodium laurine sulfate. The novelty of the work lies in comparing the effect of the mass content of asphalt-resin-paraffin deposits on the viscosity and density for light and heavy oils and in studying the effectiveness of sodium laurine sulfate when displacing paraffin oil. Several oil solutions were prepared with various mass proportions of ARPD in them, after which the temperature dependence of the viscosity and density of each solution was determined. It has been established that the presence of asphalt-resin-paraffin complexes more strongly affects the density when they are dissolved in light oil. As the mass concentration of paraffin deposits increases, their effect on density decreases for both the light oil sample and the heavy oil sample. The viscosity of the presence of paraffin is much more pronounced if they are dissolved in heavy oil than in light oil. There is a phase transformation point for asphalt-resin-paraffin complexes, which will need to be taken into account when setting up laboratory studies to study the mechanism of deposits of asphaltenes, resins, paraffins in the reservoir or downhole equipment. An experimental method was also used to study the displacement ability of sodium laurinsulfate on a bulk core model saturated with prepared model oil solutions, which are paraffinic oil. It was established that this surfactant has a greater oil displacement efficiency compared to water, in addition, based on the result, it follows that the oil displacement coefficient non-linearly depends on temperature. So, when oil is being displaced with paraffin deposits dissolved in it, there is an optimum temperature at which the maximum oil displacement coefficient is ensured.


2020 ◽  
Author(s):  
Sudad H Al-Obaidi ◽  
Smirnov VI ◽  
Kamensky IP

High viscosity of heavy oils at reservoir conditions is one of the main causes of the low production rates of producing wells, and sometimes even their complete absence when trying to develop a field on a natural mode. The rheological properties of heavy oil deposits in a wide temperature range were studied in this work. Special attention was paid to the study of viscous and elastic components of oil viscosity as a function of temperature to justify the optimal conditions for the development of heavy oil fields. Heavy oil samples collected from Pechersky oil field (Russia) were used in this research. Dynamic viscosity tests were carried out on the heavy oil of this field. It was noticed that high values of viscous and elastic components of oil viscosity were observed over the entire temperature range. It has also been remarked that the values of oil viscosity components are inversely proportional to the temperature increase.


2020 ◽  
Vol 34 (12) ◽  
pp. 15843-15854
Author(s):  
Sheng Li ◽  
Zhaomin Li ◽  
Zhengxiao Xu ◽  
Xiaochun Ban ◽  
Teng Lu

2021 ◽  
Author(s):  
Samira Haj-Shafiei

The objective of this study was to characterize the flow and rheological behaviour of model wax-stabilized water-in-oil (W/O) emulsions consisting of light mineral oil, paraffin wax and glycerol monooleate as the oil phase and water as the dispersed aqueous phase. An[sic] laboratory-scale benchtop flowloop system was used to explore the flow behaviour of the emulsions' oil phase (oil, paraffin wax and surfactant). The key contribution from this work was that the higher initial temperature gradient (40°C compared to 19°C) experienced by the rapidly-cooled oil led to more initial deposition on the flowloop inner wall. The rheological properties of W/O emulsions with different water cuts (10-50wt%) were also studied. Rotational, oscillatory rheology and creep compliance and recovery were characterized on emulsions aged up to 28 days. Overall, the results demonstrated that emulsion composition, and age could significantly influence an emulsion's flow behaviour and rheological properties.


2021 ◽  
Author(s):  
Samira Haj-Shafiei

The objective of this study was to characterize the flow and rheological behaviour of model wax-stabilized water-in-oil (W/O) emulsions consisting of light mineral oil, paraffin wax and glycerol monooleate as the oil phase and water as the dispersed aqueous phase. An[sic] laboratory-scale benchtop flowloop system was used to explore the flow behaviour of the emulsions' oil phase (oil, paraffin wax and surfactant). The key contribution from this work was that the higher initial temperature gradient (40°C compared to 19°C) experienced by the rapidly-cooled oil led to more initial deposition on the flowloop inner wall. The rheological properties of W/O emulsions with different water cuts (10-50wt%) were also studied. Rotational, oscillatory rheology and creep compliance and recovery were characterized on emulsions aged up to 28 days. Overall, the results demonstrated that emulsion composition, and age could significantly influence an emulsion's flow behaviour and rheological properties.


Fuel ◽  
1997 ◽  
Vol 76 (9) ◽  
pp. 893-895 ◽  
Author(s):  
Dong-hong Guo ◽  
Xiao-an Fu ◽  
Ji-an Tang ◽  
Long Jiang

Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 381 ◽  
Author(s):  
Haigang Hao ◽  
Pengfei Lian ◽  
Juhui Gong ◽  
Rui Gao

Heavy oil will likely dominate the future energy market. Nevertheless, processing heavy oils using conventional technologies has to face the problems of high hydrogen partial pressure and catalyst deactivation. Our previous work reported a novel method to upgrade heavy oil using hydrogen non-thermal plasma under atmospheric pressure without a catalyst. However, the plasma-driven catalytic hydrogenation mechanism is still ambiguous. In this work, we investigated the intrinsic mechanism of hydrogenating heavy oil in a plasma-driven catalytic system based on density functional theory (DFT) calculations. Two model compounds, toluene and 4-ethyltoluene have been chosen to represent heavy oil, respectively; a hydrogen atom and ethyl radical have been chosen to represent the high reactivity species generated by plasma, respectively. DFT study results indicate that toluene is easily hydrogenated by hydrogen atoms, but hard to hydrocrack into benzene and methane; small radicals, like ethyl radicals, are prone to attach to the carbon atoms in aromatic rings, which is interpreted as the reason for the increased substitution index of trap oil. The present work investigated the hydrogenation mechanism of heavy oil in a plasma-driven catalytic system, both thermodynamically and kinetically.


Sign in / Sign up

Export Citation Format

Share Document