initial deposition
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 26)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
pp. 234
Author(s):  
Lucrezia Tognolo ◽  
Daniele Coraci ◽  
Andrea Bernini ◽  
Stefano Masiero

Medial collateral ligament (MCL) injuries are the most frequent ligamentous injuries of the knee. Focused extracorporeal shock wave therapy (f-ESWT) is progressively expanding its field of application to many musculoskeletal pathologies. Although there is evidence surrounding the efficacy of f-ESWT in tendinopathies, no studies have described the usefulness of ultrasound (US)-guided f-ESWT in the treatment of ligament injuries. Herein, we report a case of a MCL injury treated with f-ESWT. Moreover, our case shows the importance of using ultrasonography in determining the effect of treatment. A 60-year-old man with a focal area of lesion in the deep fibers underwent 4 weekly sessions of US-guided f-ESWT to the injured ligament area. His pain decreased to a visual analog scale (VAS) of 3 at the end of the treatment and was completely resolved at the 1-month follow-up visit, with these results being maintained at 4-month follow-up. The US examination showed an initial deposition of “newly formed tissue” at the site of previous injury of the proximal MCL insertion, and a reduction in MCL thickness together with an improvement in echostructure. Based on this result, we speculate that non-surgical ligament injuries could be a new indication for f-ESWT. However, further investigation on the effects of f-ESWT for ligament injuries is needed.


2021 ◽  
pp. 1-17
Author(s):  
Brette S. Harris ◽  
Maya T. LaGrange ◽  
Sara K. Biddle ◽  
Tiffany L. Playter ◽  
Kathryn M. Fiess ◽  
...  

The Hare Indian Formation (HIF) is a late Eifelian to Givetian organic-rich mudstone constituting the lower portion of the Horn River Group (HRG), which has been minimally scrutinized in the literature. This paper proposes depositional environments and a sequence stratigraphic framework for the HIF. Using composition data collected via energy-dispersive X-ray fluorescence, geochemical proxies inform detrital input, silica source, and paleoredox conditions. Cross-plots and chemostratigraphic profiles of detritally sourced Al, Ti, and K and redox-sensitive Mo and V inform depositional and stratigraphic constraints. Silica proportions vary, indicating that sediment was derived from detrital and biogenic sources. Al, Ti, and K distributions increase upwards, showing increased continentally sourced minerals. Redox-sensitive metals are highest in the Bluefish Member (BM), suggesting intermittent euxinia. Based on the presence of continental and pelagic sediments, the sedimentary environment is interpreted as proximal- to mid-shelf. These proxies guide systems tract interpretations. Si and redox-sensitive metal concentrations peak higher in the BM, accompanied by lowered concentrations of Al, Ti, and K, suggesting a maximum flooding surface. At the top of the Prohibition and Bell Creek members, redox-sensitive enrichments are lower with higher concentrations of Al, Ti, and K, suggesting a maximum regressive surface. Transgression occurred during the initial deposition of the BM, followed by regression for the remainder of the HIF. The sedimentology of the HIF can be difficult to decipher; the use of chemostratigraphy supports its geological history (including sedimentation trends and a local record of relative sea level) using methods that may be applied to other fine-grained successions.


Geology ◽  
2021 ◽  
Author(s):  
Rachel N. Sortor ◽  
Brent M. Goehring ◽  
Sean P. Bemis ◽  
Chester A. Ruleman ◽  
Marc W. Caffee ◽  
...  

The Pliocene-Pleistocene transition resulted in extensive global cooling and glaciation, but isolating this climate signal within erosion and exhumation responses in tectonically active regimes can be difficult. The Nenana Gravel is a foreland basin deposit in the northern foothills of the Alaska Range (USA) that has long been linked to unroofing of the Alaska Range starting ca. 6 Ma. Using 26Al/10Be cosmogenic nuclide burial dating, we determined the timing of deposition of the Nenana Gravel and an overlying remnant of the first glacial advance into the northern foothills. Our results indicate that initial deposition of the Nenana Gravel occurred at the onset of the Pleistocene ca. 2.34 Ma and continued until at least ca. 1.7 Ma. The timing of initial deposition is correlative with expansion of the Cordilleran ice sheet, suggesting that the deposit formed due to increased glacial erosion in the Alaska Range. Abandonment of Nenana Gravel deposition occurred prior to the first glaciation extending into the northern foothills. This glaciation was hypothesized to have occurred ca. 1.5 Ma, but we found that it occurred ca. 0.39 Ma. A Pleistocene age for the Nenana Gravel and marine oxygen isotope stage 10 age for the oldest glaciation of the foothills necessitate reanalysis of incision and tectonic rates in the northern foothills of the Alaska Range, in addition to a shift in perspective on how these deposits fit into the climatic and tectonic history of the region.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255664
Author(s):  
Marie-Lazarine Poulle ◽  
Matthieu Le Corre ◽  
Matthieu Bastien ◽  
Elsa Gedda ◽  
Chris Feare ◽  
...  

Toxoplasma gondii is a protozoan parasite that uses felids as definitive hosts and warm-blooded animals as intermediate hosts. While the dispersal of T. gondii infectious oocysts from land to coastal waters has been well documented, transmission routes to pelagic species remain puzzling. We used the modified agglutination test (MAT titre ≥ 10) to detect antibodies against T. gondii in sera collected from 1014 pelagic seabirds belonging to 10 species. Sampling was carried out on eight islands of the Western Indian Ocean: Reunion and Juan de Nova (colonized by cats), Cousin, Cousine, Aride, Bird, Europa and Tromelin islands (cat-free). Antibodies against T. gondii were found in all islands and all species but the great frigatebird. The overall seroprevalence was 16.8% [95% CI: 14.5%-19.1%] but significantly varied according to species, islands and age-classes. The low antibody levels (MAT titres = 10 or 25) detected in one shearwater and three red-footed booby chicks most likely resulted from maternal antibody transfer. In adults, exposure to soils contaminated by locally deposited oocysts may explain the detection of antibodies in both wedge-tailed shearwaters on Reunion Island and sooty terns on Juan de Nova. However, 144 adults breeding on cat-free islands also tested positive. In the Seychelles, there was a significant decrease in T. gondii prevalence associated with greater distances to cat populations for species that sometimes rest on the shore, i.e. terns and noddies. This suggests that oocysts carried by marine currents could be deposited on shore tens of kilometres from their initial deposition point and that the number of deposited oocysts decreases with distance from the nearest cat population. The consumption of fishes from the families Mullidae, Carangidae, Clupeidae and Engraulidae, previously described as T. gondii oocyst-carriers (i.e. paratenic hosts), could also explain the exposure of terns, noddies, boobies and tropicbirds to T. gondii. Our detection of antibodies against T. gondii in seabirds that fish in the high sea, have no contact with locally contaminated soils but frequent the shores and/or consume paratenic hosts supports the hypothesis of an open-sea dispersal of T. gondii oocysts by oceanic currents and/or fish.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zulkifli Azman ◽  
Nafarizal Nayan ◽  
Megat Muhammad Ikhsan Megat Hasnan ◽  
Nurafiqah Othman ◽  
Anis Suhaili Bakri ◽  
...  

PurposeThis study aims to investigate the effect of temperature applied at the initial deposition of Aluminium Nitride (AlN) thin-film on a silicon substrate by high-power impulse magnetron sputtering (HiPIMS) technique. Design/methodology/approachHiPIMS system was used to deposit AlN thin film at a low output power of 200 W. The ramping temperature was introduced to substrate from room temperature to maximum 100°Cat the initial deposition of thin-film, and the result was compared to thin-film sputtered with no additional heat. For the heat assistance AlN deposition, the substrate was let to cool down to room temperature for the remaining deposition time. The thin-films were characterized by X-ray diffraction (XRD) and atomic force microscope (AFM) while the MIS Schottky diode characteristic investigated through current-voltage response by a two-point probe method. FindingsThe XRD pattern shows significant improvement of the strong peak of the c-axis (002) preferred orientation of the AlN thin-film. The peak was observed narrowed with temperature assisted where FWHM calculated at 0.35° compared to FWHM of AlN thin film deposited at room temperature at around 0.59°. The degree of crystallinity of bulk thin film was improved by 28% with temperature assisted. The AFM images show significant improvement as low surface roughness achieved at around 0.7 nm for temperature assisted sample compares to 3 nm with no heat applied. Originality/valueThe small amount of heat introduced to the substrate has significantly improved the growth of the c-axis AlN thin film, and this method is favorable in the deposition of the high-quality thin film at the low-temperature process.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11862
Author(s):  
Kara Gadeken ◽  
William C. Clemo ◽  
Will Ballentine ◽  
Steven L. Dykstra ◽  
Mai Fung ◽  
...  

The benthic impact of aquaculture waste depends on the area and extent of waste accumulation on the sediment surface below and around the farm. In this study we investigated the effect of flow on biodeposit transport and initial deposition by calculating a rough aquaculture “footprint” around an oyster aquaculture farm in the Damariscotta River, ME. We also compared a site under the farm to a downstream “away” site calculated to be within the footprint of the farm. We found similar sediment biogeochemical fluxes, geochemical properties and macrofaunal communities at the site under the farm and the away site, as well as low organic enrichment at both sites, indicating that biodeposition in this environment likely does not have a major influence on the benthos. To predict accumulation of biodeposits, we measured sediment erodibility under a range of shear stresses and found slightly higher erosion rates at the farm than at the away site. A microalgal mat was observed at the sediment surface in many sediment cores. Partial failure of the microalgal mat was observed at high shear velocity, suggesting that the mat may fail and surface sediment erode at shear velocities comparable to or greater than those calculated fromin situ flow measurements. However, this study took place during neap tide, and it is likely that peak bottom velocities during spring tides are high enough to periodically “clear” under-farm sediment of recent deposits.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1235
Author(s):  
Gen Tian ◽  
Xiaoming Wang ◽  
Wenyu Wang ◽  
Qing Chang ◽  
Yang Zhao ◽  
...  

Wire arc additive manufacturing (WAAM) technology is widely used in the fields of aerospace, shipbuilding, and automobile industry due to the advantages of fast forming speed, high material utilization and low production cost. WAAM is extremely sensitive to parameters, and different processes and materials produce different deposition effects and properties. Therefore, it is of great significance to study the WAAM formability of various materials. Herein, the microstructure, mechanical properties, and galvanic corrosion behavior of the low-carbon high-strength steel (10CrNi3MoV) fabricated by cold metal transfer (CMT) WAAM technology were investigated. The single-channel multilayer deposition parts were prepared by reciprocating deposition, and the forming parts were divided into six zones by observing the different positions of the structure: matrix, heat-affected zone, remelting zone, initial deposition zone, interlayer zone, and interlayer bonding zone. Electron backscattered diffraction (EBSD) analysis showed that the amount of recrystallization and substructure in the deposition layer had no obvious change, and the texture phenomenon was the most obvious in the initial deposition zone of the pole map reaction. The texture phenomenon gradually weakened with the increase of the deposition layers. The microhardness from the matrix to the deposition stable zone was tested. The hardness of the matrix changed smoothly, that of the heat-affected zone was the largest, and that of the deposition layer was 221–282 HV0.2. The tensile properties were tested in different directions and angles, and the yield strength and tensile strength of the deposited layer were more than 550 MPa and 760 MPa, respectively. The galvanic corrosion behavior between the deposited layer and the matrix was investigated, and the polarization curve showed that the corrosion potential of the deposited layer was lower than that of the matrix, and the corrosion current density of the deposited layer was higher than that of the matrix.


2021 ◽  
Vol 31 (8) ◽  
pp. 2307-2322
Author(s):  
Li FENG ◽  
You-wei ZHANG ◽  
Chen WEN ◽  
Si-zhen LI ◽  
Jia-feng LI ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Arne R. Diercks ◽  
Isabel C. Romero ◽  
Rebekka A. Larson ◽  
Patrick Schwing ◽  
Austin Harris ◽  
...  

The focus of this study was to determine the long-term fate of oil-residues from the 2010 Deepwater Horizon (DwH) oil spill due to remobilization, transport, and re-distribution of oil residue contaminated sediments to down-slope depocenters following initial deposition on the seafloor. We characterized hydrocarbon residues, bulk sediment organic matter, ease of resuspension, sedimentology, and accumulation rates to define distribution patterns in a 14,300 km2 area southeast of the DwH wellhead (1,500 to 2,600 m water depth). Oil-residues from the DwH were detected at low concentrations in 62% of the studied sites at specific sediment layers, denoting episodic deposition of oil-residues during 2010–2014 and 2015–2018 periods. DwH oil residues exhibited a spatial distribution pattern that did not correspond with the distribution of the surface oil slick, subsurface plume or original seafloor spatial expression. Three different regions were apparent in the overall study area and distinguished by the episodic nature of sediment accumulation, the ease of sediment resuspension, the timing of oil-residue deposition, carbon content and isotopic composition and foram fracturing extent. These data indicate that resuspension and down-slope redistribution of oil-residues occurred in the years following the DwH event and must be considered in determining the fate of the spilled oil deposited on the seafloor.


2021 ◽  
Author(s):  
Samira Haj-Shafiei

The objective of this study was to characterize the flow and rheological behaviour of model wax-stabilized water-in-oil (W/O) emulsions consisting of light mineral oil, paraffin wax and glycerol monooleate as the oil phase and water as the dispersed aqueous phase. An[sic] laboratory-scale benchtop flowloop system was used to explore the flow behaviour of the emulsions' oil phase (oil, paraffin wax and surfactant). The key contribution from this work was that the higher initial temperature gradient (40°C compared to 19°C) experienced by the rapidly-cooled oil led to more initial deposition on the flowloop inner wall. The rheological properties of W/O emulsions with different water cuts (10-50wt%) were also studied. Rotational, oscillatory rheology and creep compliance and recovery were characterized on emulsions aged up to 28 days. Overall, the results demonstrated that emulsion composition, and age could significantly influence an emulsion's flow behaviour and rheological properties.


Sign in / Sign up

Export Citation Format

Share Document