Near‐surface soil moisture retrieval from ASAR Wide Swath imagery using a Principal Component Analysis

2008 ◽  
Vol 29 (10) ◽  
pp. 2925-2942 ◽  
Author(s):  
X. Kong ◽  
S. R. Dorling
Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 548 ◽  
Author(s):  
Yuqing Sun ◽  
Jun Niu

Hydrological regionalization is a useful step in hydrological modeling and prediction. The regionalization is not always straightforward, however, due to the lack of long-term hydrological data and the complex multi-scale variability features embedded in the data. This study examines the multiscale soil moisture variability for the simulated data on a grid cell base obtained from a large-scale hydrological model, and clusters the grid-cell based soil moisture data using wavelet-based multiscale entropy and principal component analysis, over the Xijiang River basin in South China, for the period of 2002–2010. The effective regionalization, for 169 grid cells with the special resolution of 0.5° × 0.5°, produced homogeneous groups based on the pattern of wavelet-based entropy information. Four distinct modes explain 80.14% of the total embedded variability of the transformed wavelet power across different timescales. Moreover, the possible implications of the regionalization results for local hydrological applications, such as parameter estimation for an ungagged catchment and designing a uniform prediction strategy for a sub-area in a large-scale basin, are discussed.


2015 ◽  
Vol 19 (12) ◽  
pp. 4831-4844 ◽  
Author(s):  
C. Draper ◽  
R. Reichle

Abstract. A 9 year record of Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) soil moisture retrievals are assimilated into the Catchment land surface model at four locations in the US. The assimilation is evaluated using the unbiased mean square error (ubMSE) relative to watershed-scale in situ observations, with the ubMSE separated into contributions from the subseasonal (SMshort), mean seasonal (SMseas), and inter-annual (SMlong) soil moisture dynamics. For near-surface soil moisture, the average ubMSE for Catchment without assimilation was (1.8 × 10−3 m3 m−3)2, of which 19 % was in SMlong, 26 % in SMseas, and 55 % in SMshort. The AMSR-E assimilation significantly reduced the total ubMSE at every site, with an average reduction of 33 %. Of this ubMSE reduction, 37 % occurred in SMlong, 24 % in SMseas, and 38 % in SMshort. For root-zone soil moisture, in situ observations were available at one site only, and the near-surface and root-zone results were very similar at this site. These results suggest that, in addition to the well-reported improvements in SMshort, assimilating a sufficiently long soil moisture data record can also improve the model representation of important long-term events, such as droughts. The improved agreement between the modeled and in situ SMseas is harder to interpret, given that mean seasonal cycle errors are systematic, and systematic errors are not typically targeted by (bias-blind) data assimilation. Finally, the use of 1-year subsets of the AMSR-E and Catchment soil moisture for estimating the observation-bias correction (rescaling) parameters is investigated. It is concluded that when only 1 year of data are available, the associated uncertainty in the rescaling parameters should not greatly reduce the average benefit gained from data assimilation, although locally and in extreme years there is a risk of increased errors.


2017 ◽  
Vol 18 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Randal D. Koster ◽  
Rolf H. Reichle ◽  
Sarith P. P. Mahanama

Abstract NASA’s Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture retrievals with a revisit time of 2–3 days and a latency of 24 h. Here, to enhance the utility of the SMAP data, an approach is presented for improving real-time soil moisture estimates (nowcasts) and for forecasting soil moisture several days into the future. The approach, which involves using an estimate of loss processes (evaporation and drainage) and precipitation to evolve the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP retrievals themselves. The nowcast accuracy over the continental United States is shown to be markedly higher than that achieved with the simple yet common persistence approach. The accuracy of soil moisture forecasts, which rely on precipitation forecasts rather than on precipitation measurements, is reduced relative to nowcast accuracy but is still significantly higher than that obtained through persistence.


2010 ◽  
Vol 14 (6) ◽  
pp. 979-990 ◽  
Author(s):  
Y. Y. Liu ◽  
J. P. Evans ◽  
M. F. McCabe ◽  
R. A. M. de Jeu ◽  
A. I. J. M. van Dijk ◽  
...  

Abstract. Vertisols are clay soils that are common in the monsoonal and dry warm regions of the world. One of the characteristics of these soil types is to form deep cracks during periods of extended dry, resulting in significant variation of the soil and hydrologic properties. Understanding the influence of these varying soil properties on the hydrological behavior of the system is of considerable interest, particularly in the retrieval or simulation of soil moisture. In this study we compare surface soil moisture (θ in m3 m−3) retrievals from AMSR-E using the VUA-NASA (Vrije Universiteit Amsterdam in collaboration with NASA) algorithm with simulations from the Community Land Model (CLM) over vertisol regions of mainland Australia. For the three-year period examined here (2003–2005), both products display reasonable agreement during wet periods. During dry periods however, AMSR-E retrieved near surface soil moisture falls below values for surrounding non-clay soils, while CLM simulations are higher. CLM θ are also higher than AMSR-E and their difference keeps increasing throughout these dry periods. To identify the possible causes for these discrepancies, the impacts of land use, topography, soil properties and surface temperature used in the AMSR-E algorithm, together with vegetation density and rainfall patterns, were investigated. However these do not explain the observed θ responses. Qualitative analysis of the retrieval model suggests that the most likely reason for the low AMSR-E θ is the increase in soil porosity and surface roughness resulting from cracking of the soil. To quantitatively identify the role of each factor, more in situ measurements of soil properties that can represent different stages of cracking need to be collected. CLM does not simulate the behavior of cracking soils, including the additional loss of moisture from the soil continuum during drying and the infiltration into cracks during rainfall events, which results in overestimated θ when cracks are present. The hydrological influence of soil physical changes are expected to propagate through the modeled system, such that modeled infiltration, evaporation, surface temperature, surface runoff and groundwater recharge should be interpreted with caution over these soil types when cracks might be present. Introducing temporally dynamic roughness and soil porosity into retrieval algorithms and adding a "cracking clay" module into models are expected to improve the representation of vertisol hydrology.


2006 ◽  
Vol 7 (6) ◽  
pp. 1308-1322 ◽  
Author(s):  
O. Merlin ◽  
A. Chehbouni ◽  
G. Boulet ◽  
Y. Kerr

Abstract Near-surface soil moisture retrieved from Soil Moisture and Ocean Salinity (SMOS)-type data is downscaled and assimilated into a distributed soil–vegetation–atmosphere transfer (SVAT) model with the ensemble Kalman filter. Because satellite-based meteorological data (notably rainfall) are not currently available at finescale, coarse-scale data are used as forcing in both the disaggregation and the assimilation. Synthetic coarse-scale observations are generated from the Monsoon ‘90 data by aggregating the Push Broom Microwave Radiometer (PBMR) pixels covering the eight meteorological and flux (METFLUX) stations and by averaging the meteorological measurements. The performance of the disaggregation/assimilation coupling scheme is then assessed in terms of surface soil moisture and latent heat flux predictions over the 19-day period of METFLUX measurements. It is found that the disaggregation improves the assimilation results, and vice versa, the assimilation of the disaggregated microwave soil moisture improves the spatial distribution of surface soil moisture at the observation time. These results are obtainable regardless of the spatial scale at which solar radiation, air temperature, wind speed, and air humidity are available within the microwave pixel and for an assimilation frequency varying from 1/1 day to 1/5 days.


2020 ◽  
Author(s):  
Sarah Schönbrodt-Stitt ◽  
Paolo Nasta ◽  
Nima Ahmadian ◽  
Markus Kurtenbach ◽  
Christopher Conrad ◽  
...  

<p>Mapping near-surface soil moisture (<em>θ</em>) is of tremendous relevance for a broad range of environment-related disciplines and meteorological, ecological, hydrological and agricultural applications. Globally available products offer the opportunity to address <em>θ</em> in large-scale modelling with coarse spatial resolution such as at the landscape level. However, <em>θ</em> estimation at higher spatial resolution is of vital importance for many small-scale applications. Therefore, we focus our study on a small-scale catchment (MFC2) belonging to the “Alento” hydrological observatory, located in southern Italy (Campania Region). The goal of this study is to develop new machine-learning approaches to estimate high grid-resolution (about 17 m cell size) <em>θ</em> maps from mainly backscatter measurements retrieved from C-band Synthetic Aperture Radar (SAR) based on Sentinel-1 (S1) images and from gridded terrain attributes. Thus, a workflow comprising a total of 48 SAR-based <em>θ</em> patterns estimated for 24 satellite overpass dates (revisit time of 6 days) each with ascendant and descendent orbits will be presented. To enable for the mapping, SAR-based <em>θ</em> data was calibrated with in-situ measurements carried out with a portable device during eight measurement campaigns at time of satellite overpasses (four overpass days in total with each ascendant and descendent satellite overpasses per day in November 2018). After the calibration procedure, data validation was executed from November 10, 2018 till March 28, 2019 by using two stationary sensors monitoring <em>θ</em> at high-temporal (1-min recording time). The specific sensor locations reflected two contrasting field conditions, one bare soil plot (frequently kept clear, without disturbance of vegetation cover) and one non-bare soil plot (real-world condition). Point-scale ground observations of <em>θ</em> were compared to pixel-scale (17 m × 17 m), SAR-based <em>θ</em> estimated for those pixels corresponding to the specific positions of the stationary sensors. Mapping performance was estimated through the root mean squared error (RMSE). For a short-term time series of <em>θ</em> (Nov 2018) integrating 136 in situ, sensor-based <em>θ</em> (<em>θ</em><sub>insitu</sub>) and 74 gravimetric-based <em>θ</em> (<em>θ</em><sub>gravimetric</sub>) measurements during a total of eight S1 overpasses, mapping performance already proved to be satisfactory with RMSE=0.039 m³m<sup>-</sup>³ and R²=0.92, respectively with RMSE=0.041 m³m<sup>-</sup>³ and R²=0.91. First results further reveal that estimated satellite-based <em>θ</em> patterns respond to the evolution of rainfall. With our workflow developed and results, we intend to contribute to improved environmental risk assessment by assimilating the results into hydrological models (e.g., HydroGeoSphere), and to support future studies on combined ground-based and SAR-based <em>θ</em> retrieval for forested land (future missions operating at larger wavelengths e.g. NISARL-band, Biomass P-band sensors).</p>


Sign in / Sign up

Export Citation Format

Share Document