Synthesis and characterization of SSS/MA/NVCL copolymer as high temperature oil well cement retarder

Author(s):  
Chi Zhang ◽  
Jianzhou Jin ◽  
Weining Xu ◽  
Junlan Yang ◽  
Ming Li
2015 ◽  
Vol 814 ◽  
pp. 191-198 ◽  
Author(s):  
Xiu Jian Xia ◽  
Jin Tang Guo ◽  
Shuo Qiong Liu ◽  
Jian Zhou Jin ◽  
Yong Jin Yu ◽  
...  

In this study, a novel polymer retarder DRH-200LG was synthesized to solve the problems of retarding failure, strong dispersivity under high temperature and adverse impact on the strength development of cement stone. The composition of the polymer was confirmed by IR, and its thermal stability was proved by DSC, TG analysis and thermal treatment at 200 °C. Furthermore, the stability and strength development of cement slurry was evaluated by the comparative consistency method and ultrasonic method, respectively. The results show that DRH-200LG has good high temperature-resistance and retarding performance, presenting favourable influence on the stability and strength development of cement slurry. DRH-200LG shows a good application prospect in the cementation of deep & ultra-deep wells. And it has some guiding significance in the research and innovation of a novel polymer used as oil well cement retarder.


RSC Advances ◽  
2018 ◽  
Vol 8 (27) ◽  
pp. 14812-14822 ◽  
Author(s):  
Peng Zhigang ◽  
Zhang Jian ◽  
Feng Qian ◽  
Zou Changjun ◽  
Zheng Yong ◽  
...  

An amphoteric composite polymer (hereinafter referred to as PAADM) as high temperature-resistant cement retarder was prepared byin situintercalated polymerization method with AMPS, AA and DMDAAC as monomers, and modified montmorillonite as an active polymerization filler.


2020 ◽  
Vol 993 ◽  
pp. 1341-1350
Author(s):  
Xiu Jian Xia ◽  
Yong Jin Yu ◽  
Jian Zhou Jin ◽  
Shuo Qiong Liu ◽  
Ming Xu ◽  
...  

The conventional oil-well cement dispersant has the characteristics of poor dispersion at high temperature, poor compatibility with other additives, and environmental pollution during the production process. In this article, with ultra-early strong polyether monomer, acrylic acid, 2-acrylamine-2-methylpropyl sulfonic acid, sodium methacrylate as copolymer monomers, an environmentally friendly polycarboxylic acid dispersant, DRPC-1L, was prepared by the aqueous solution free-radical polymerization. The chemical composition and thermal stability of the synthetic copolymer were characterized by FTIR and TGA techniques. The evaluation results show that DRPC-1L has a wide temperature range (30~210 °C), good salt-resistance and dispersing effect. It can significantly improve the rheological performance of cement slurry, and it is well matched with oil-well cement additives such as fluid loss agent, retarder and so on. Moreover, it is beneficial to the mechanical strength development of set cement, especially the early compressive strength. It can also inhibit the abnormal gelation phenomenon of cement slurry, flash set, that occurs during high temperature thickening experiments, which plays an important role in enhancing the comprehensive performance of cement slurry. Consequently, the novel polycarboxylic acid dispersant has good application prospects in deep and ultra-deep wells cementing.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 456 ◽  
Author(s):  
Wenting Mao ◽  
Chrysoula Litina ◽  
Abir Al-Tabbaa

A majority of well integrity problems originate from cracks of oil well cement. To address the crack issues, bespoke sodium silicate microcapsules were used in this study for introducing autonomous crack healing ability to oil well cement under high-temperature service conditions at 80 °C. Two types of sodium silicate microcapsule, which differed in their polyurea shell properties, were first evaluated on their suitability for use under the high temperature of 80 °C in the wellbore. Both types of microcapsules showed good thermal stability and survivability during mixing. The microcapsules with a more rigid shell were chosen over microcapsule with a more rubbery shell for further tests on the self-healing efficiency since the former had much less negative effect on the oil well cement strength. It was found that oil well cement itself showed very little healing capability when cured at 80 °C, but the addition of the microcapsules significantly promoted its self-healing performance. After healing for 7 days at 80 °C, the microcapsule-containing cement pastes achieved crack depth reduction up to ~58%, sorptivity coefficient reduction up to ~76%, and flexural strength regain up to ~27%. The microstructure analysis further confirmed the stability of microcapsules and their self-healing reactions upon cracking in the high temperature oil well cement system. These results provide a promising perspective for the development of self-healing microcapsule-based oil well cements.


Sign in / Sign up

Export Citation Format

Share Document