Optimality conditions of set-valued optimization problem involving relative algebraic interior in ordered linear spaces

Optimization ◽  
2012 ◽  
Vol 63 (3) ◽  
pp. 433-446 ◽  
Author(s):  
Zhi-Ang Zhou ◽  
Xin-Min Yang ◽  
Jian-Wen Peng
2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Zhi-Ang Zhou

A new notion of the ic-cone convexlike set-valued map characterized by the algebraic interior and the vector closure is introduced in real ordered linear spaces. The relationship between the ic-cone convexlike set-valued map and the nearly cone subconvexlike set-valued map is established. The results in this paper generalize some known results in the literature from locally convex spaces to linear spaces.


2018 ◽  
Vol 68 (2) ◽  
pp. 421-430
Author(s):  
Karel Pastor

Abstract In our paper we will continue the comparison which was started by Vsevolod I. Ivanov [Nonlinear Analysis 125 (2015), 270–289], where he compared scalar optimality conditions stated in terms of Hadamard derivatives for arbitrary functions and those which was stated for ℓ-stable functions in terms of Dini derivatives. We will study the vector optimization problem and we show that also in this case the optimality condition stated in terms of Hadamard derivatives is more advantageous.


Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 12 ◽  
Author(s):  
Xiangkai Sun ◽  
Hongyong Fu ◽  
Jing Zeng

This paper deals with robust quasi approximate optimal solutions for a nonsmooth semi-infinite optimization problems with uncertainty data. By virtue of the epigraphs of the conjugates of the constraint functions, we first introduce a robust type closed convex constraint qualification. Then, by using the robust type closed convex constraint qualification and robust optimization technique, we obtain some necessary and sufficient optimality conditions for robust quasi approximate optimal solution and exact optimal solution of this nonsmooth uncertain semi-infinite optimization problem. Moreover, the obtained results in this paper are applied to a nonsmooth uncertain optimization problem with cone constraints.


1968 ◽  
Vol 16 (2) ◽  
pp. 135-144
Author(s):  
G. J. O. Jameson

Let X be a partially ordered linear space, i.e. a real linear space with a reflexive, transitive relation ≦ such that


Sign in / Sign up

Export Citation Format

Share Document