scholarly journals Effect of Busseola fusca on the incidence of maize ear rot caused by Fusarium moniliforme and Stenocarpella maydis

1992 ◽  
Vol 9 (4) ◽  
pp. 177-179 ◽  
Author(s):  
B. C. Flett ◽  
J. B.J. van Rensburg
Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 279-279 ◽  
Author(s):  
J.-H. Wang ◽  
H.-P. Li ◽  
J.-B. Zhang ◽  
B.-T. Wang ◽  
Y.-C. Liao

From September 2009 to October 2012, surveys to determine population structure of Fusarium species on maize were conducted in 22 provinces in China, where the disease incidence ranged from 5 to 20% in individual fields. Maize ears with clear symptoms of Fusarium ear rot (with a white to pink- or salmon-colored mold at the ear tip) were collected from fields. Symptomatic kernels were surface-sterilized (1 min in 0.1% HgCl2, and 30 s in 70% ethanol, followed by three rinses with sterile distilled water), dried, and placed on PDA. After incubation for 3 to 5 days at 28°C in the dark, fungal colonies displaying morphological characteristics of Fusarium spp. (2) were purified by transferring single spores and identified to species level by morphological characteristics (2), and DNA sequence analysis of translation elongation factor-1α (TEF) and β-tubulin genes. A large number of Fusarium species (mainly F. graminearum species complex, F. verticillioides, and F. proliferatum) were identified. These Fusarium species are the main causal agents of maize ear rot (2). Morphological characteristics of six strains from Anhui, Hubei, and Yunnan provinces were found to be identical to those of F. kyushuense (1), which was mixed with other Fusarium species in the natural infection in the field. Colonies grew fast on PDA with reddish-white and floccose mycelia. The average growth rate was 7 to 9 mm per day at 25°C in the dark. Reverse pigmentation was deep red. Microconidia were obovate, ellipsoidal to clavate, and 5.4 to 13.6 (average 8.8) μm in length. Macroconidia were straight or slightly curved, 3- to 5-septate, with a curved and acute apical cell, and 26.0 to 50.3 (average 38.7) μm in length. No chlamydospores were observed. Identity of the fungus was further investigated by sequence comparison of the partial TEF gene (primers EF1/2) and β-tubulin gene (primers T1/22) of one isolate (3). BLASTn analysis of the TEF amplicon (KC964133) and β-tubulin gene (KC964152) obtained with cognate sequences available in GenBank database revealed 99.3 and 99.8% sequence identity, respectively, to F. kyushuense. Pathogenicity tests were conducted twice by injecting 2 ml of a prepared spore suspension (5 × 105 spores/ml) into maize ears (10 per isolate of cv. Zhengdan958) through silk channel 4 days post-silk emergence under field conditions in Wuhan, China. Control plants were inoculated with sterile distilled water. The ears were harvested and evaluated 30 days post-inoculation. Reddish-white mold was observed on inoculated ears and the infected kernels were brown. No symptoms were observed on water controls. Koch's postulates were fulfilled by re-isolating the pathogen from infected kernels. F. kyushuense, first described on wheat in Japan (1), has also been isolated from rice seeds in China (4). It was reported to produce both Type A and Type B trichothecene mycotoxins (1), which cause toxicosis in animals. To our knowledge, this is the first report of F. kyushuense causing maize ear rot in China and this disease could represent a serious risk of yield losses and mycotoxin contamination in maize and other crops. The disease must be considered in existing disease management practices. References: (1) T. Aoki and K. O'Donnell. Mycoscience 39:1, 1998. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006. (3) F. Van Hove et al. Mycologia 103:570, 2011. (4) Z. H. Zhao and G. Z. Lu. Mycotaxon 102:119, 2007.


2017 ◽  
Vol 45 (1) ◽  
pp. 35-46 ◽  
Author(s):  
K. Gromadzka ◽  
M. Wit ◽  
K. Górna ◽  
J. Chełkowski ◽  
A. Waśkiewicz ◽  
...  

2016 ◽  
Vol 62 (No. 8) ◽  
pp. 348-354 ◽  
Author(s):  
K. Gromadzka ◽  
K. Górna ◽  
J. Chełkowski ◽  
A. Waśkiewicz

This work presents a survey on mycotoxins (seasons 2013 and 2014) and Fusarium species (seasons from 1985 to 2014) in maize ear rot in Poland. Twelve mycotoxins were identified in maize kernel samples exhibiting symptoms of Fusarium ear rot or rotten kernels at the harvest in two locations in Poland during the seasons 2013 and 2014. This is the first complex survey on the co-occurrence of four Fusarium mycotoxin groups in maize kernels: the group of the mycohormone zearalenone; the group of trichothecenes – deoxynivalenol and nivalenol; the group of fumonisins; and the group of cyclic hexadepsipeptides – beauvericin and enniatins; and in addition, moniliformin. Four Fusarium species were identified in preharvest maize ear rot in the 2013 and 2014 harvests namely:<br /> F. graminearum, F. poae, F. subglutinans and F. verticillioides. Since 1985, eleven Fusarium species have been identified in 13 investigation seasons. Apart from those mentioned above, F. avenaceum, F. cerealis, F. culmorum and<br /> F. sporotrichioides were observed with irregular frequencies, and three species, i.e. F. proliferatum, F. tricinctum and F. equiseti, were identified sporadically. A significant increase of F. verticillioides frequency and a decrease of F. subglutinans frequency and changes of mycotoxin profile have been observed in the two decades since 1995.  


2020 ◽  
Vol 319 ◽  
pp. 108491
Author(s):  
Antonia Susca ◽  
Alessandra Villani ◽  
Antonio Moretti ◽  
Gaetano Stea ◽  
Antonio Logrieco

1997 ◽  
Vol 19 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Bernard Vigier ◽  
Lana M. Reid ◽  
Keith A. Seifert ◽  
Douglas W. Stewart ◽  
Robert I. Hamilton
Keyword(s):  
Ear Rot ◽  

Toxins ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 224 ◽  
Author(s):  
Karolina Gromadzka ◽  
Lidia Błaszczyk ◽  
Jerzy Chełkowski ◽  
Agnieszka Waśkiewicz

Maize has become one of the most important crops for food and feed production—both as a silage and crop residue worldwide. The present study aimed to identify the co-occurrence of Fusarium subglutinans, Fusarium verticillioides, Trichoderma atroviride, Sarocladium zeae, and Lecanicillium lecanii on maize ear rot. Further, the accumulation of mycotoxins as secondary metabolites of Fusarium spp. in maize ear samples was also analyzed. Maize ear samples were collected between 2014 and 2017 from two main maize growing areas in Poland (Greater Poland and Silesia region). A significant difference was found in the frequency of two main Fusarium spp. that infect maize ears, namely F. subglutinans and F. verticillioides. In addition to Fusarium spp. T. atroviride, S. zeae, and L. lecanii were also identified. T. atroviride species was found in 14% of maize samples examined between 2014 and 2017, particularly with a high percentage of Trichoderma spp. recorded in 2014, i.e., in 31% of samples. However, mycotoxin content (beauvericin and fumonisins) varied, depending on both the location and year of sampling. The interaction of fungi and insects inhabiting maize ear and kernel is very complex and not yet elucidated. Therefore, further research is required in this area.


Sign in / Sign up

Export Citation Format

Share Document