food and feed
Recently Published Documents


TOTAL DOCUMENTS

1730
(FIVE YEARS 681)

H-INDEX

71
(FIVE YEARS 11)

Author(s):  
Lina Wu ◽  
Amin Elshorbagy ◽  
Md. Shahabul Alam

Abstract Understanding the dynamics of water-energy-food (WEF) nexus interactions with climate change and human intervention helps inform policymaking. This study demonstrates the WEF nexus behavior under ensembles of climate change, transboundary inflows, and policy options, and evaluates the overall nexus performance using a previously developed system dynamics-based WEF nexus model—WEF-Sask. The climate scenarios include a baseline (1986-2014) and near-future climate projections (2021-2050). The approach is demonstrated through the case study of Saskatchewan, Canada. Results show that rising temperature with increased rainfall likely maintains reliable food and feed production. The climate scenarios characterized by a combination of moderate temperature increase and slightly less rainfall or higher temperature increase with slightly higher rainfall are easier to adapt to by irrigation expansion. However, such expansion uses a large amount of water resulting in reduced hydropower production. In contrast, higher temperature, combined with less rainfall, such as SSP370 (2.4 ℃, -6 mm), is difficult to adapt to by irrigation expansion. Renewable energy expansion, the most effective climate change mitigation option in Saskatchewan, leads to the best nexus performance during 2021-2050, reducing total water demand, groundwater demand, greenhouse gas (GHG) emissions, and potentially increasing water available for food production. In this study, we recommend and use food and power production targets and provide an approach to assessing the impacts of hydroclimate and policy options on the WEF nexus, along with suggestions for adapting the agriculture and energy sectors to climate change.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Aleksandra Kowalska ◽  
Louise Manning

Sesame seeds within the European Union (EU) are classified as foods not of animal origin. Two food safety issues associated with sesame seeds have emerged in recent years, i.e., Salmonella contamination and the presence of ethylene oxide. Fumigation with ethylene oxide to reduce Salmonella in seeds and spices is not approved in the EU, so its presence in sesame seeds from India was a sentinel incident sparking multiple trans-European product recalls between 2020–2021. Following an interpretivist approach, this study utilises academic and grey sources including data from the EU Rapid Alert System for Food and Feed (RASFF) database to inform a critical appraisal of current EU foods not of animal origin legislation and associated governance structures and surveillance programs. This is of particular importance as consumers are encouraged towards plant-based diets. This study shows the importance of collaborative governance utilizing data from company testing and audits as well as official regulatory controls to define the depth and breadth of a given incident in Europe. The development of reflexive governance supported by the newest technology (e.g., blockchain) might be of value in public–private models of food safety governance. This study contributes to the literature on the adoption of risk-based food safety regulation and the associated hybrid public–private models of food safety governance where both regulators and private organizations play a vital role in assuring public health.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Binbin Chen ◽  
Bryan Zong Lin Loo ◽  
Ying Ying Cheng ◽  
Peng Song ◽  
Huan Fan ◽  
...  

Abstract Background Proteases catalyze the hydrolysis of peptide bonds of proteins, thereby improving dietary protein digestibility, nutrient availability, as well as flavor and texture of fermented food and feed products. The lactobacilli Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) and Pediococcus acidilactici are widely used in food and feed fermentations due to their broad metabolic capabilities and safe use. However, extracellular protease activity in these two species is low. Here, we optimized protease expression and secretion in L. plantarum and P. acidilactici via a genetic engineering strategy. Results To this end, we first developed a versatile and stable plasmid, pUC256E, which can propagate in both L. plantarum and P. acidilactici. We then confirmed expression and secretion of protease PepG1 as a functional enzyme in both strains with the aid of the previously described L. plantarum-derived signal peptide LP_0373. To further increase secretion of PepG1, we carried out a genome-wide experimental screening of signal peptide functionality. A total of 155 predicted signal peptides originating from L. plantarum and 110 predicted signal peptides from P. acidilactici were expressed and screened for extracellular proteolytic activity in the two different strains, respectively. We identified 12 L. plantarum signal peptides and eight P. acidilactici signal peptides that resulted in improved yield of secreted PepG1. No significant correlation was found between signal peptide sequence properties and its performance with PepG1. Conclusion The vector developed here provides a powerful tool for rapid experimental screening of signal peptides in both L. plantarum and P. acidilactici. Moreover, the set of novel signal peptides identified was widely distributed across strains of the same species and even across some closely related species. This indicates their potential applicability also for the secretion of other proteins of interest in other L. plantarum or P. acidilactici host strains. Our findings demonstrate that screening a library of homologous signal peptides is an attractive strategy to identify the optimal signal peptide for the target protein, resulting in improved protein export.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmad Nasrollahzadeh ◽  
Samira Mokhtari ◽  
Morteza Khomeiri ◽  
Per Saris

AbstractToday, a few hundred mycotoxins have been identified and the number is rising. Mycotoxin detoxification of food and feed has been a technically uphill task for the industry. In the twenty-first century, the public demand is healthy food with minimum use of chemicals and preservatives. Among all the fungal inhibition and mycotoxin detoxification methods so far developed for food, biopreservation and biodetoxification have been found safe and reliable. Nowadays, lactic acid bacteria (LAB) are of great interest as biological additives in food owing to their Generally Recognized as Safe (GRAS) classification and mycotoxin detoxification capability. The occurrence of fungul growth in the food chain can lead to health problems such as mycotoxicosis and cancer to humans due to producing mycotoxins such as aflatoxins. Biopreservation is among the safest and most reliable methods for inhibition of fungi in food. This review highlights the great potential of LAB as biodetoxificant by summarizing various reported detoxification activities of LAB against fungal mycotoxins released into foods. Mechanisms of mycotoxin detoxification, also the inherent and environmental factors affecting detoxifying properties of LAB are also covered.


2022 ◽  
Author(s):  
Imane Laraba ◽  
Mark Busman ◽  
David M. Geiser ◽  
Kerry O'Donnell

Recent studies on multiple continents indicate members of the Fusarium tricinctum species complex (FTSC) are emerging as prevalent pathogens of small-grain cereals, pulses, and other economically important crops. These understudied fusaria produce structurally diverse mycotoxins, among which enniatins (ENNs) and moniliformin (MON) are the most frequent and of greatest concern to food and feed safety. Herein a large survey of fusaria in the Fusarium Research Center and Agricultural Research Service culture collections was undertaken to assess species diversity and mycotoxin potential within the FTSC. A 151-strain collection originating from diverse hosts and substrates from different agroclimatic regions throughout the world was selected from 460 FTSC strains to represent the breadth of FTSC phylogenetic diversity. Evolutionary relationships inferred from a 5-locus dataset, using maximum likelihood and parsimony, resolved the 151 strains as 24 phylogenetically distinct species, including nine that are new to science. Of the five genes analyzed, nearly full-length phosphate permease sequences contained the most phylogenetically informative characters, establishing its suitability for species-level phylogenetics within the FTSC. Fifteen of the species produced ENNs, MON, the sphingosine analog 2-amino-14,16- dimethyloctadecan-3-ol (AOD), and the toxic pigment aurofusarin (AUR) on a cracked corn kernel substrate. Interestingly, the five earliest diverging species in the FTSC phylogeny (i.e., F. iranicum, F. flocciferum, F. torulosum, Fusarium spp. FTSC 8 and 24) failed to produce AOD and MON, but synthesized ENNs and/or AUR. Moreover, our reassessment of nine published phylogenetic studies on the FTSC identified 11 additional novel taxa, suggesting this complex comprises at least 36 species.


2022 ◽  
Vol 12 ◽  
Author(s):  
Md Atiqul Haque ◽  
Fei Wang ◽  
Yi Chen ◽  
Foysal Hossen ◽  
Md Aminul Islam ◽  
...  

The current study provides information on Bacillus spp. contamination along with present status in commercially available poultry and animal feeds as well as animal-derived products in Bangladesh. The research has been conducted to determine if animal feed and its components are a source of Bacillus spp. contamination in feed and food chain. Out of 180 different feeds, milk, egg, and human stool samples, 218 Bacillus spp. were isolated and identified by cultural morphology, microscopic, biochemical, and molecular characteristics where B. cereus, B. subtilis, B. amyloliquefaciens, B. licheniformis, B. thuringiensis, B. megaterium, and B. coagulans accounted for 51, 22, 9.1, 5.9, 5, 3.6, and 2.2%, respectively. Regarding the enumeration of total viable count and total Bacillus count, correspondingly 67 and 39% samples were found to be contaminated with above 10,000 CFU/g, while highest contamination was 85 and 75% in broiler feed, respectively. The total number of bacteria above the regulatory limits in commercially available feeds indicates a poor compliance with regulation and abuse administration in the Bangladeshi market. Moreover, a hospital-based survey showed that food-borne Bacillus spp. contributed to 4.5% human diarrhea cases and 25% food contamination associated with vegetables, rice, RTE food, milk, and egg, accounting for 46, 34, 14, 4, and 2%, respectively. B. cereus was the dominant isolate correspondingly accounting for 56 and 51% egg and milk contamination followed by B. amyloliquefaciens (32%) and B. thuringiensis (12%) in egg and B. subtilis (25%), B. amyloliquefaciens (12%), B. thuringiensis (6.4%), and B. coagulans (3.2%) in milk, respectively. Toxin gene profiling of Bacillus spp. revealed that B. cereus constituted a principal part of virulence, while B. thuringiensis, B. licheniformis, B. megaterium, B. coagulans, and B. subtilis showed genetic diversity and B. amyloliquefaciens had not carried any toxin gene. Detection rate of enterotoxin genes (nheA, nheB, nheC, cytK, hblA, hblC, hblD, and entFM) showed that 55% isolates carried nheABC genes, 80% entFM, and 71% cytK, whereas only 33% of the isolates contained hblACD gene clusters. These virulence genes were posing a threat to human health due to spread across the food and feed chain. Finally, our findings support the hypothesis that B. cereus might contribute to clinical diarrhea, gizzard erosion, and lung infection in duck and poultry, and that it contaminates animal-derived foods resulting in toxicity and antibacterial resistance to humans. Therefore, maximal tolerance limits of Bacillus spp. and their potential risks to the animal industry are urgently needed to clarify. Moreover, Bacillus spp.–induced toxin residual must be altered for human health via food chain transmission.


2022 ◽  
Author(s):  
Armaghan Saeb ◽  
Sarah Maria Grundmann ◽  
Denise K Gessner ◽  
Sven Schuchardt ◽  
Erika Most ◽  
...  

an alternative and sustainable source of food and feed. A byproduct from mass-rearing of insect larvae are the shed cuticles - the most external components of insects which are a...


2022 ◽  
pp. 343-386
Author(s):  
Hesham A. El Enshasy ◽  
Nuttha Thongchul ◽  
Siqing Liu

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Antonio M. De Ron ◽  
Ana Paula Rodiño

Plant genetic resources are the basis for the genetic improvement of cultivated plants and future food and feed security [...]


Sign in / Sign up

Export Citation Format

Share Document