Effects of magnitude and frequency of variations in external power output on simulated cycling time-trial performance

2013 ◽  
Vol 31 (15) ◽  
pp. 1639-1646 ◽  
Author(s):  
Marc Wells ◽  
Greg Atkinson ◽  
Simon Marwood
2011 ◽  
Vol 6 (2) ◽  
pp. 208-220 ◽  
Author(s):  
Jeremiah J. Peiffer ◽  
Chris R. Abbiss

The purpose of this study was to examine the effect of environmental temperature on variability in power output, self-selected pacing strategies, and performance during a prolonged cycling time trial. Nine trained male cyclists randomly completed four 40 km cycling time trials in an environmental chamber at 17°C, 22°C, 27°C, and 32°C (40% RH). During the time trials, heart rate, core body temperature, and power output were recorded. The variability in power output was assessed with the use of exposure variation analysis. Mean 40 km power output was significantly lower during 32°C (309 ± 35 W) compared with 17°C (329 ± 31 W), 22°C (324 ± 34 W), and 27°C (322 ± 32 W). In addition, greater variability in power production was observed at 32°C compared with 17°C, as evidenced by a lower (P = .03) standard deviation of the exposure variation matrix (2.9 ± 0.5 vs 3.5 ± 0.4 units, respectively). Core temperature was greater (P < .05) at 32°C compared with 17°C and 22°C from 30 to 40 km, and the rate of rise in core temperature throughout the 40 km time trial was greater (P < .05) at 32°C (0.06 ± 0.04°C·km–1) compared with 17°C (0.05 ± 0.05°C·km–1). This study showed that time-trial performance is reduced under hot environmental conditions, and is associated with a shift in the composition of power output. These finding provide insight into the control of pacing strategies during exercise in the heat.


2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S274
Author(s):  
B Garcia ◽  
J Peiffer ◽  
J Talanian ◽  
I E. Faria ◽  
R Quintana ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Freya Bayne ◽  
Sebastien Racinais ◽  
Katya Mileva ◽  
Steve Hunter ◽  
Nadia Gaoua

Purpose: The purpose of this article was to (i) compare different modes of feedback (multiple vs. single) on 30 min cycling time-trial performance in non-cyclist’s and cyclists-triathletes, and (ii) investigate cyclists-triathlete’s information acquisition.Methods: 20 participants (10 non-cyclists, 10 cyclists-triathletes) performed two 30 min self-paced cycling time-trials (TT, ∼5–7 days apart) with either a single feedback (elapsed time) or multiple feedback (power output, elapsed distance, elapsed time, cadence, speed, and heart rate). Cyclists-triathlete’s information acquisition was also monitored during the multiple feedback trial via an eye tracker. Perceptual measurements of task motivation, ratings of perceived exertion (RPE) and affect were collected every 5 min. Performance variables (power output, cadence, distance, speed) and heart rate were recorded continuously.Results: Cyclists-triathletes average power output was greater compared to non-cyclists with both multiple feedback (227.99 ± 42.02 W; 137.27 ± 27.63 W; P &lt; 0.05) and single feedback (287.9 ± 60.07 W; 131.13 ± 25.53 W). Non-cyclist’s performance did not differ between multiple and single feedback (p &gt; 0.05). Whereas, cyclists-triathletes 30 min cycling time-trial performance was impaired with multiple feedback (227.99 ± 42.02 W) compared to single feedback (287.9 ± 60.07 W; p &lt; 0.05), despite adopting and reporting a similar pacing strategy and perceptual responses (p &gt; 0.05). Cyclists-triathlete’s primary and secondary objects of regard were power (64.95 s) and elapsed time (64.46 s). However, total glance time during multiple feedback decreased from the first 5 min (75.67 s) to the last 5 min (22.34 s).Conclusion: Cyclists-triathletes indoor 30 min cycling TT performance was impaired with multiple feedback compared to single feedback. Whereas non-cyclist’s performance did not differ between multiple and single feedback. Cyclists-triathletes glanced at power and time which corresponds with the wireless sensor networks they use during training. However, total glance time during multiple feedback decreased over time, and therefore, overloading athletes with feedback may decrease performance in cyclists-triathletes.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0173120 ◽  
Author(s):  
Mark R. Stone ◽  
Kevin Thomas ◽  
Michael Wilkinson ◽  
Emma Stevenson ◽  
Alan St. Clair Gibson ◽  
...  

2014 ◽  
Vol 28 (9) ◽  
pp. 2513-2520 ◽  
Author(s):  
Renato A.S. Silva ◽  
Fernando L. Silva-Júnior ◽  
Fabiano A. Pinheiro ◽  
Patrícia F.M. Souza ◽  
Daniel A. Boullosa ◽  
...  

2008 ◽  
Vol 26 (14) ◽  
pp. 1477-1487 ◽  
Author(s):  
Marc J. Quod ◽  
David T. Martin ◽  
Paul B. Laursen ◽  
Andrew S. Gardner ◽  
Shona L. Halson ◽  
...  

2010 ◽  
Vol 5 (2) ◽  
pp. 140-151 ◽  
Author(s):  
Mohammed Ihsan ◽  
Grant Landers ◽  
Matthew Brearley ◽  
Peter Peeling

Purpose:The effect of crushed ice ingestion as a precooling method on 40-km cycling time trial (CTT) performance was investigated.Methods:Seven trained male subjects underwent a familiarization trial and two experimental CTT which were preceded by 30 min of either crushed ice ingestion (ICE) or tap water (CON) consumption amounting to 6.8 g⋅kg-1 body mass. The CTT required athletes to complete 1200 kJ of work on a wind-braked cycle ergometer. During the CTT, gastrointestinal (Tgi) and skin (Tsk) temperatures, cycling time, power output, heart rate (HR), blood lactate (BLa), ratings of perceived exertion (RPE) and thermal sensation (RPTS) were measured at set intervals of work.Results:Precooling lowered the Tgi after ICE significantly more than CON (36.74 ± 0.67°C vs 37.27 ± 0.24°C, P < .05). This difference remained evident until 200 kJ of work was completed on the bike (37.43 ± 0.42°C vs 37.64 ± 0.21°C). No significant differences existed between conditions at any time point for Tsk, RPE or HR (P > .05). The CTT completion time was 6.5% faster in ICE when compared with CON (ICE: 5011 ± 810 s, CON: 5359 ± 820 s, P < .05).Conclusions:Crushed ice ingestion was effective in lowering Tgi and improving subsequent 40-km cycling time trial performance. The mechanisms for this enhanced exercise performance remain to be clarified.


2019 ◽  
Vol 14 (3) ◽  
pp. 323-330 ◽  
Author(s):  
Steve H. Faulkner ◽  
Iris Broekhuijzen ◽  
Margherita Raccuglia ◽  
Maarten Hupperets ◽  
Simon G. Hodder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document