thermal sensation
Recently Published Documents


TOTAL DOCUMENTS

891
(FIVE YEARS 356)

H-INDEX

43
(FIVE YEARS 9)

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Yongkai Sun ◽  
Xi Luo ◽  
Hui Ming

Owing to movement in the spatial environment and changes in activity levels, students’ thermal perception is time varying in classrooms throughout different periods of the day. However, previous studies have rarely considered the time-varying thermal perception in different periods of the day, which may cause discomfort for students and lead to energy wastage. Therefore, a study was conducted to investigate the time-varying thermal perception of students and its influencing factors in different classes of the day. In addition, the differences in students’ adaptive behaviors in different periods were also explored. A total of 578 university students were surveyed using questionnaire surveys during the heating season in Xi’an, China. The following results can be obtained: (1) The thermal sensation vote and thermal preference vote values in the afternoon were significantly higher than those in the morning. At the start of the first class in the morning/afternoon, the thermal sensation of the students had the highest sensitivity to outdoor temperature changes. (2) The students’ thermal perception was greatly affected by the preclass activity state at the start of the first class in the morning/afternoon. However, in other periods, the above phenomenon was not obvious. (3) In the afternoon, the frequency of clothing adjustment was greater than that in the morning, and this behavior would significantly affect the students’ thermal sensation. (4) Compared with the current classroom heating strategy, the heating strategy of dynamically adjusting the indoor set temperature according to the time-varying characteristics of the students can theoretically achieve energy savings of 25.6%.


2022 ◽  
Vol 3 ◽  
Author(s):  
Jared Ferguson ◽  
Amir Hadid ◽  
Yoram Epstein ◽  
Dennis Jensen

Purpose: Examine the effect of synthetic fabrics (SYN, 60% polyester: 40% nylon) vs. 100% cotton fabric (CTN) on the 20-km cycling time trial (20 kmCTT) performance of competitive cyclists and triathletes.Methods: In this randomized controlled crossover study, 15 adults (5 women) aged 29.6 ± 2.7 years (mean ± SE) with a peak rate of O2 consumption of 60.0 ± 2.0 ml/kg/min completed a 20 kmCTT under ambient laboratory conditions (24.3 ± 0.7°C and 17 ± 7% relative humidity) with a simulated wind of ~3 m/s while wearing SYN or CTN clothing ensembles. Both ensembles were of snowflake mesh bi-layer construction and consisted of a loose-fitting long-sleeved shirt with full-length trousers.Results: Participants maintained a significantly (p < 0.05) higher cycling speed and power output over the last 6-km of the 20 kmCTT while wearing the SYN vs. CTN ensemble (e.g., by 0.98 km/h and 18.4 watts at the 20-km mark). Consequently, 20 kmCTT duration was significantly reduced by 15.7 ± 6.8 sec or 0.8 ± 0.3% during SYN vs. CTN trials (p < 0.05). Improved 20 kmCTT performance with SYN vs. CTN clothing could not be explained by concurrent differences in esophageal temperature, sweat rate, ratings of perceived exertion and/or cardiometabolic responses to exercise. However, it was accompanied by significantly lower mean skin temperatures (~1°C) and more favorable ratings of perceived clothing comfort and thermal sensation during exercise.Conclusion: Under the experimental conditions of the current study, athletic clothing made of synthetic fabrics significantly improved the 20 kmCTT performance of endurance-trained athletes by optimizing selected thermoregulatory and perceptual responses to exercise.


2022 ◽  
Author(s):  
LMB Esteves ◽  
TC Fagundes ◽  
PH dos Santos ◽  
LMAV da Silva ◽  
S de Alcântara ◽  
...  

SUMMARY This study aimed to evaluate the effect of the bleaching gel application site on chromatic changes and postoperative sensitivity in teeth. Thirty patients were selected and allocated to three groups (n=10 per group), according to the location of the gel: GI, cervical application; GII, incisal application; and GIII, total facial. The amount and time of application of the 35% hydrogen peroxide (H2O2) gel were standardized. Color changes were analyzed by ΔE and Wid (bleaching index), using the values obtained in the readings conducted on a digital spectrophotometer in the cervical (CRs) and incisal regions (IRs) of the teeth. Spontaneous sensitivity was assessed using the questionnaire, and the stimulated sensitivity caused by the thermosensory analysis (TSA). The analysis occurred in five stages: baseline, after the first, second, and third whitening sessions (S), and 14 days after the end of the whitening, using the linear regression statistical model with mixed effects and post-test by orthogonal contrasts (p<0.05). Although the IR was momentarily favored, at the end of the treatment, the restriction of the application site provided results similar to those obtained when the gel was applied over the entire facial surface. Regarding sensitivity, only the GI showed spontaneous sensitivity. In the TSA, GIII had less influence on the threshold of the thermal sensation. It was concluded that the chromatic alteration does not depend on the gel application site. Spontaneous sensitivity is greater when the gel is concentrated in the cervical region (CR), and the teeth remain sensitized by thermal stimuli even after 14 days.


2021 ◽  
Vol 53 (6) ◽  
pp. 210606
Author(s):  
Cornelia Hildegardis ◽  
Anak Agung Ayu Oka Saraswati ◽  
I Dewa Gede Agung Diasana Putra ◽  
Ni Ketut Agusinta Dewi

This research examined thermal comfort in  church buildings in Indonesia by making a comparison between three different Indonesian climatic regions using three different research models. A static model, an adaptation study model and a CFD simulation were used to find the similarities and differences between the results generated from determining thermal comfort in church buildings in the three regions. The comparison revealed that church buildings had different PMV scores at each measuring point that were inversely proportional to the subjects’ response on thermal comfort inside the buildings, i.e. points adjoining with openings affect a low PMV score and a high perceived thermal sensation, and vice versa. The CFD simulation showed that changing the conditions of the openings affects air velocity and flow into the building, which influences the subjects’ thermal comfort response inside the churches.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8159
Author(s):  
Edyta Dudkiewicz ◽  
Marta Laska ◽  
Natalia Fidorów-Kaprawy

Research towards understanding the relationship between maintaining thermal comfort and energy efficiency in the public utility buildings was undertaken among 323 1st year students during class hours. Questionnaires surveys and measurements of indoor conditions were performed. The article identified students’ sensations and perceptions concerning indoor conditions. Temperature, relative humidity, air velocity and CO2 concentration measured to assess room conditions showed that the auditorium had almost comfortable conditions according to the literature guidelines. The indices used to assess students’ perceptions were: Thermal Sensation Vote (TSV), Thermal Preference Vote (TPV), Air Freshness Sensation Vote (AfSV), Air Movement Preference Vote (AmPV), and Relative Humidity Preference Vote (RHPV). The interpretation of these indicators showed that while the students’ requests for temperature changes and increased air movement are adequate for the air conditions in the room, the evaluation of stuffiness and requests for changes in humidity levels are surprising. Striving uncritically to meet the desired room parameters, according to the users votes, can lead to deterioration of the air and not only the increase in energy consumption but even waste it. Better understanding of users’ preferences and behaviour and further application of this knowledge indirectly aim at increasing energy efficiency in buildings.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8077
Author(s):  
Bin Yang ◽  
Tze-Huan Lei ◽  
Pengfei Yang ◽  
Kaixuan Liu ◽  
Faming Wang

Face and neck cooling has been found effective in improving thermal comfort during exercise in the heat despite the fact that the surface area of human face and neck regions accounts for only 5.5% of the entire body. Presently very little documented research has been conducted to investigate cooling the face and neck only to improve indoor thermal comfort. In this study, two highly energy efficient wearable face and neck cooling fans were used to improve occupant thermal comfort in two warm indoor conditions (30 and 32 °C). Local skin temperatures and perceptual responses while using the two wearable cooling fans were examined and compared. Results showed that both cooling fans could significantly reduce local skin temperatures at the forehead, face and neck regions by up to 2.1 °C. Local thermal sensation votes at the face and neck were decreased by 0.82–1.21 scale unit at the two studied temperatures. Overall TSVs decreased by 1.03–1.14 and 1.34–1.66 scale units at 30 and 32 °C temperatures, respectively. Both cooling fans could raise the acceptable HVAC temperature setpoint to 32.0 °C, resulting in a 45.7% energy saving over the baseline HVAC setpoint of 24.5 °C. Furthermore, occupants are advised to use the free-control cooling mode when using those two types of wearable cooling fans to improve thermal comfort. Finally, despite some issues on dry eyes and dry lips associated with those wearable cooling fans, it is concluded that those two highly energy-efficient wearable cooling fans could greatly improve thermal comfort and save HVAC energy.


2021 ◽  
pp. 004051752110571
Author(s):  
Tin Wai Cheung ◽  
Tao Liu ◽  
Mei Yu Yao ◽  
Yifei Tao ◽  
He Lin ◽  
...  

Textiles are conventionally utilized as the raw materials for making clothing and complementary accessories. To keep abreast of the times, a new direction of integrating textiles into electronic technology has been given in order to develop a temperature-sensing device with outstanding built-in flexibility, versality and softness. In this study, a flexible construction of the textile-based thermocouple temperature sensor via an industrial-and-technological-based weaving process was designed. The feasible arrangement of the conductive textile materials in the warp and weft directions related to the temperature-sensing ability was studied in detail, and significant linearity was shown in the range of 5–50[Formula: see text] with different groups of combinations of the conductive yarns. More cross-intersections and ‘hot junctions’ resulted from the 3 × 3 warp–weft arrangement, offering higher stability and accuracy in thermal sensation. Besides, the resistance of the thermocouple remained almost constant under different degrees of bending. The relationship between the resistance and the bending flexibility was also investigated over a range of temperature.


2021 ◽  
Vol 206 ◽  
pp. 108338
Author(s):  
Jiansong Wu ◽  
Boyang Sun ◽  
Zhuqiang Hu ◽  
Letian Li ◽  
Huizhong Zhu

Sign in / Sign up

Export Citation Format

Share Document