Emission Rates Due to Indoor Activities: Indoor Aerosol Model Development, Evaluation, and Applications

2005 ◽  
Vol 39 (11) ◽  
pp. 1111-1127 ◽  
Author(s):  
Tareq Hussein ◽  
Hannele Korhonen ◽  
Erik Herrmann ◽  
Kaarle Hämeri ◽  
Kari E. J. Lehtinen ◽  
...  
2012 ◽  
Vol 117 (D10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Florian Couvidat ◽  
Édouard Debry ◽  
Karine Sartelet ◽  
Christian Seigneur

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 55-56
Author(s):  
Christian D Ramirez-Camba ◽  
Crystal L Levesque

Abstract A mechanistic model was developed with the objective to characterize weight gain and essential amino acid (EAA) deposition in the different tissue pools that make up the pregnant sow: placenta, allantoic fluid, amniotic fluid, fetus, uterus, mammary gland, and maternal body were considered. The data used in this modelling approach were obtained from published scientific articles reporting weights, crude protein (CP), and EAA composition in the previously mentioned tissues; studies reporting not less than 5 datapoints across gestation were considered. A total of 12 scientific articles published between 1977 and 2020 were selected for the development of the model and the model was validated using 11 separate scientific papers. The model consists of three connected sub-models: protein deposition (Pd) model, weight gain model, and EAA deposition model. Weight gain, Pd, and EAA deposition curves were developed with nonparametric statistics using splines regression. The validation of the model showed a strong agreement between observed and predicted growth (r2 = 0.92, root mean square error = 3%). The proposed model also offered descriptive insights into the weight gain and Pd during gestation. The model suggests that the definition of time-dependent Pd is more accurately described as an increase in fluid deposition during mid-gestation coinciding with a reduction in Pd. In addition, due to differences in CP composition between pregnancy-related tissues and maternal body, Pd by itself may not be the best measurement criteria for the estimation of EAA requirement in pregnant sows. The proposed model also captures the negative maternal Pd that occurs in late gestation and indicates that litter size influences maternal tissue mobilization more than parity. The model predicts that the EAA requirements in early and mid-gestation are 75, 55 and 50% lower for primiparous sows than parity 2, 3 and 4+ sows, respectively, which suggest the potential benefits of parity segregated feeding.


2018 ◽  
Vol 18 (12) ◽  
pp. 8707-8725 ◽  
Author(s):  
Lin Su ◽  
Jimmy C. H. Fung

Abstract. The GOCART–Thompson microphysics scheme coupling the GOCART aerosol model and the aerosol-aware Thompson–Eidhammer microphysics scheme has been implemented in the WRF-Chem to quantify and evaluate the effect of dust on the ice nucleation process in the atmosphere by serving as ice nuclei (IN). The performance of the GOCART–Thompson microphysics scheme in simulating the effect of dust in atmospheric ice nucleation is then evaluated over East Asia during spring, a typical dust-intensive season, in 2012. Based upon the dust emission reasonably reproduced by WRF-Chem, the effect of dust on atmospheric cloud ice water content is well reproduced. With abundant dust particles serving as IN, the simulated ice water mixing ratio and ice crystal number concentration increases by 15 and 7 % on average over the dust source region and downwind areas during the investigated period. The comparison with the ice water path from satellite observations demonstrated that the simulation of the cloud ice profile is substantially improved by considering the indirect effect of dust particles in the simulations. Additional sensitivity experiments are carried out to optimize the parameters in the ice nucleation parameterization in the GOCART–Thompson microphysics scheme. Results suggest that lowering the threshold relative humidity with respect to ice to 100 % for the ice nucleation parameterization leads to further improvement in cloud ice simulation.


2011 ◽  
Vol 11 (3) ◽  
pp. 309-314 ◽  
Author(s):  
Tareq Hussein ◽  
Bjarke Mølgaard ◽  
Kaarle Hämeri

2015 ◽  
Vol 8 (3) ◽  
pp. 631-667 ◽  
Author(s):  
Y. H. Lee ◽  
P. J. Adams ◽  
D. T. Shindell

Abstract. The TwO-Moment Aerosol Sectional (TOMAS) microphysics model has been integrated into the state-of-the-art general circulation model, GISS ModelE2. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the ModelE2-TOMAS model is compared to the default aerosol model in ModelE2, which is a one-moment aerosol (OMA) model (i.e. no aerosol microphysics). Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement (mostly within a factor of 2) with observations of sulfur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as ModelE2-OMA) cannot capture the observed vertical distribution of sulfur dioxide over the Pacific Ocean, possibly due to overly strong convective transport and overpredicted precipitation. The ModelE2-TOMAS model simulates observed aerosol number concentrations and cloud condensation nuclei concentrations roughly within a factor of 2. Anthropogenic aerosol burdens in ModelE2-OMA differ from ModelE2-TOMAS by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. We observed larger differences for naturally emitted aerosols such as sea salt and mineral dust, as those emission rates are quite different due to different upper size cutoff assumptions.


Author(s):  
Tareq Hussein ◽  
Jakob Löndahl ◽  
Sara Thuresson ◽  
Malin Alsved ◽  
Afnan Al-Hunaiti ◽  
...  

Transmission of respiratory viruses is a complex process involving emission, deposition in the airways, and infection. Inhalation is often the most relevant transmission mode in indoor environments. For severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the risk of inhalation transmission is not yet fully understood. Here, we used an indoor aerosol model combined with a regional inhaled deposited dose model to examine the indoor transport of aerosols from an infected person with novel coronavirus disease (COVID-19) to a susceptible person and assess the potential inhaled dose rate of particles. Two scenarios with different ventilation rates were compared, as well as adult female versus male recipients. Assuming a source strength of 10 viruses/s, in a tightly closed room with poor ventilation (0.5 h−1), the respiratory tract deposited dose rate was 140–350 and 100–260 inhaled viruses/hour for males and females; respectively. With ventilation at 3 h−1 the dose rate was only 30–90 viruses/hour. Correcting for the half-life of SARS-CoV-2 in air, these numbers are reduced by a factor of 1.2–2.2 for poorly ventilated rooms and 1.1–1.4 for well-ventilated rooms. Combined with future determinations of virus emission rates, the size distribution of aerosols containing the virus, and the infectious dose, these results could play an important role in understanding the full picture of potential inhalation transmission in indoor environments.


Sign in / Sign up

Export Citation Format

Share Document