indoor aerosol
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 3)

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1808
Author(s):  
Mengyun Chen ◽  
Kaikai Zhu ◽  
Pengpeng Tan ◽  
Junping Liu ◽  
Junyi Xie ◽  
...  

Although ammonia–nitrogen (NH4+–N) and nitrate–nitrogen (NO3−–N) are the two main forms of N absorbed and utilized by plants, the preferences of plants for these forms are still unclear. In this study, we analyzed the growth, photosynthesis, and nutrients of pecan under different NH4+:NO3− ratios (0/0, 0/100, 25/75, 50/50, 75/25, 100/0) by indoor aerosol incubation. The results showed that additions of different N forms promoted the growth and development of pecan seedlings. When NO3−–N was used as the sole N source, it significantly promoted the ground diameter growth of pecan and increased the leaf pigment content and photosynthetic rate. The NH4+:NO3− ratio of 75:25 and NH4+–N as the sole N source significantly increased the soluble sugars in stems and roots, starch in leaves, stems and roots, soluble protein in leaves and stems, and soluble phenols in stems and roots. Additionally, the NH4+:NO3− ratio of 75:25 increased plant height, leaf number, root soluble protein, and leaf soluble phenol contents. In conclusion, regarding the physiological aspects of pecan growth, pecans are more inclined to use NH4+–N. Considering that the NH4+–N as the only N source may lead to nutrient imbalance or even toxicity, the NH4+:NO3− ratio of 75:25 was most favorable for the growth and development of pecan seedlings.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1682
Author(s):  
Mostafa Yuness Abdelfatah Mostafa ◽  
Hyam Nazmy Bader Khalaf ◽  
Michael V. Zhukovsky

A correlation between the mass concentration of particulate matter (PM) and the occurrence of health-related problems or diseases has been confirmed by several studies. However, little is known about indoor PM concentrations, their associated risks or their impact on health. In this work, the PM1, PM2.5 and PM10 produced by different indoor aerosol sources (candles, cooking, electronic cigarettes, tobacco cigarettes, mosquito coils and incense) are studied. The purpose is to quantify the emission characteristics of different indoor particle sources. The mass concentration, the numerical concentration, and the size distribution of PM from various sources were determined in an examination room 65 m3 in volume. Sub-micrometer particles and approximations of PM1, PM2.5 and PM10 concentrations were measured simultaneously using a diffusion aerosol spectrometer (DAS). The ultrafine particle concentration for the studied indoor aerosol sources was approximately 7 × 104 particles/cm3 (incense, mosquito coils and electronic cigarettes), 1.2 × 105 particles/cm3 for candles and cooking and 2.7 × 105 particles/cm3 for tobacco cigarettes. The results indicate that electronic cigarettes can raise indoor PM2.5 levels more than 100 times. PM1 concentrations can be nearly 55 and 30 times higher than the background level during electronic cigarette usage and tobacco cigarette burning, respectively. It is necessary to study the evaluation of indoor PM, assess the toxic potential of internal molecules and develop and test strategies to ensure the improvement of indoor air quality.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257689
Author(s):  
Patrick Finn Horve ◽  
Leslie Dietz ◽  
Dale Northcutt ◽  
Jason Stenson ◽  
Kevin Van Den Wymelenberg

The worldwide spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has ubiquitously impacted many aspects of life. As vaccines continue to be manufactured and administered, limiting the spread of SARS-CoV-2 will rely more heavily on the early identification of contagious individuals occupying reopened and increasingly populated indoor environments. In this study, we investigated the utility of an impaction-based bioaerosol sampling system with multiple nucleic acid collection media. Heat-inactivated SARS-CoV-2 was utilized to perform bench-scale, short-range aerosol, and room-scale aerosol experiments. Through bench-scale experiments, AerosolSense Capture Media (ACM) and nylon flocked swabs were identified as the highest utility media. In room-scale aerosol experiments, consistent detection of aerosol SARS-CoV-2 was achieved at an estimated aerosol concentration equal to or greater than 0.089 genome copies per liter of room air (gc/L) when air was sampled for eight hours or more at less than one air change per hour (ACH). Shorter sampling periods (75 minutes) yielded consistent detection at ~31.8 gc/L of room air and intermittent detection down to ~0.318 gc/L at (at both 1 and 6 ACH). These results support further exploration in real-world testing scenarios and suggest the utility of indoor aerosol surveillance as an effective risk mitigation strategy in occupied buildings.


Risk Analysis ◽  
2021 ◽  
Author(s):  
Hooman Parhizkar ◽  
Kevin G. Van Den Wymelenberg ◽  
Charles N. Haas ◽  
Richard L. Corsi

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258382
Author(s):  
Ashwin Johri

The COVID-19 global pandemic has caused millions of infections and deaths despite mitigation efforts that involve physical distancing, mask-wearing, avoiding indoor gatherings and increasing indoor ventilation. The purpose of this study was to compare ways to improve indoor ventilation and assess its effect on artificially generated aerosol counts. It was hypothesized that inbuilt kitchen vents would be more effective in reducing indoor aerosol counts than opening windows alone. A fixed amount of saline aerosol was dispersed in the experimental area using a nebulizer under constant temperature and a narrow range of humidity. A laser air quality monitor was used to record small particle counts every 30 minutes from baseline to 120 minutes for four different experimental groups for each combination of kitchen vents and windows. The results of the study demonstrate that aerosol counts were lowest with the kitchen exhaust vents on. This study suggests that liberal use of home exhaust systems like the kitchen vents could achieve significantly more air exchange than open windows alone and may present an effective solution to improving indoor ventilation, especially during the colder months when people tend to congregate indoors in closed spaces. There were no safety concerns involved when conducting this experiment.


Author(s):  
Jung Hoon Lee ◽  
Max Rounds ◽  
Forbes McGain ◽  
Robyn Schofield ◽  
Grant Skidmore ◽  
...  

2021 ◽  
Vol 33 (7) ◽  
pp. 073315
Author(s):  
Yash Shah ◽  
John W. Kurelek ◽  
Sean D. Peterson ◽  
Serhiy Yarusevych

Author(s):  
Patrick F. Horve ◽  
Leslie Dietz ◽  
Dale Northcutt ◽  
Jason Stenson ◽  
Kevin G. Van Den Wymelenberg

The worldwide spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has ubiquitously impacted many aspects of life. As vaccines continue to be manufactured and administered, limiting the spread of SARS-CoV-2 will rely more heavily on the early identification of contagious individuals occupying reopened and increasingly populated indoor environments. In this study, we investigated the utility of an impaction-based aerosol sampling system with multiple nucleic acid collection media. Heat-inactivated SARS-CoV-2 was utilized to perform bench-scale, short-range aerosol, and room-scale aerosol experiments. Through bench-scale experiments, AerosolSense Capture Media (ACM) and nylon flocked swabs were identified as the highest utility media. In room-scale aerosol experiments, consistent detection of aerosol SARS-CoV-2 was achieved at a concentration equal to or greater than 0.089 genome copies per liter of room air (gc/L) when air was sampled for eight hours or more at less than one air change per hour (ACH). Shorter sampling periods (~75 minutes) yielded consistent detection at ~31.8 gc/L of room air and intermittent detection down to ~0.318 gc/L at (1 and 6+ ACH respectively). These results support further exploration in real-world testing scenarios and suggest the utility of indoor aerosol surveillance as an effective risk mitigation strategy in occupied buildings.


Sign in / Sign up

Export Citation Format

Share Document