Oxidation-Reduction Behaviour of Antimony Oxide in Some Binary Borate and Silicate Glasses

1979 ◽  
Vol 38 (3) ◽  
pp. 108-109 ◽  
Author(s):  
A. Paul
1984 ◽  
Vol 19 (8) ◽  
pp. 2593-2598 ◽  
Author(s):  
B. F. Flandermeyer ◽  
A. K. Agarwal ◽  
H. U. Anderson ◽  
M. M. Nasrallah

2013 ◽  
Vol 49 (30) ◽  
pp. 3143 ◽  
Author(s):  
Jorgen S. Willemsen ◽  
Jan C. M. van Hest ◽  
Floris P. J. T. Rutjes

1976 ◽  
Vol 41 (3) ◽  
pp. 442-447 ◽  
Author(s):  
A. V. Beran ◽  
R. F. Huxtable ◽  
D. R. Sperling

A sensor suitable for continuous transcutaneous PCO2 measurements is described. The sensor consists of an antimony-antimony oxide electrode in combination with a silver-silver chloride reference electrode, bathed in an electrolyte and covered by a Teflon membrane. A servo-controlled heater unit was used to maintain the sensor's temperature and to produce local hyperemia. The resulting oxidation-reduction potential under constant temperature isa linear function of the logarithm PCO2. Response time (95%) to stepchanges in PCO2 from 27 to 70 mmHg was 2.7 +/- 0.3 min. Following a 12-h “aging”time, the electrode exhibited a minimal drift of 5.2 +/-2.2 mV for 16 h, representing an average PCO2 drift of 0.5 mmHg/h. This sensor was applied onthree rabbits and on five human volunteers, and found satisfactory under normal physiological conditions.


Nanoscale ◽  
2013 ◽  
Vol 5 (22) ◽  
pp. 11139 ◽  
Author(s):  
Sajanikumari Sadasivan ◽  
Ronan M. Bellabarba ◽  
Robert P. Tooze

2020 ◽  
Vol 76 (9-10) ◽  
pp. 387-390
Author(s):  
V. I. Savinkov ◽  
G. Yu. Shakhgil’dyan ◽  
A. S. Naumov ◽  
N. N. Klimenko ◽  
V. N. Sigaev

Sign in / Sign up

Export Citation Format

Share Document