scholarly journals Spatial distribution of total halogenated organic compounds (TX), adsorbable organic halogens (AOX), and heavy metals in wetland soil irrigated with pulp and paper wastewater

2016 ◽  
Vol 29 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Liqiang Cui ◽  
Tianming Chen ◽  
Cheng Ding ◽  
Zhaoxia Li ◽  
Jinlong Yan ◽  
...  
2010 ◽  
Vol 113-116 ◽  
pp. 1230-1234 ◽  
Author(s):  
Xiao Lei Lv ◽  
Fang Ma ◽  
Li Wei ◽  
Li Wang ◽  
Chang Long Pang

In this study, a survey for the spatial distribution of heavy metals in Shouguang reed wetland of China was conducted. Samples were collected from water and soil in two parts of the wetland: treatment wetland and natural wetland. The elements including K, Ca, Na, Mg, Al, Fe, As, Cr, Pb, Zn, Mn, Hg were analyzed. The changes of their contents along the flow direction were investigated and the contents in treatment wetland and natural wetland were compared. The data indicates that the contents of nutrient and heavy metals decrease along the flow direction. The soil in Shouguang is saline-alkali. The nutrient elements are enriched, while the heavy metals are in low concentrations. The content of the nutrient and heavy metal in treatment wetland is higher than that in natural wetland. The removal rate of the element is Fe(68.6%), Al(45.8%), K(44.7%), Na (25.7%), Ca(23.1%), Mg(22.8%), Pb(90.45%), Zn (87.83%), Cd(71.16%), Mn(56.75%), Cr(40%). The Hg and Cd are undetected. Contents of As, Cr, Pb ,Zn and Mn in soil are highest in top layer. With the depth increasing, the concentration of heavy metal decreases.


2008 ◽  
Vol 23 (2) ◽  
pp. 450-460 ◽  
Author(s):  
Beata Załęska-Chróst ◽  
Lech Smoczyński ◽  
Regina Wardzyńska

2012 ◽  
Vol 27 (4) ◽  
pp. 707-713 ◽  
Author(s):  
Jukka Pekka lsoaho ◽  
Suvi Tarkkanen ◽  
Raimo Alen ◽  
Juha Fiskari

Abstract Softwood-based kraft mill bleaching effluents from the initial bleaching stages D0 and E1 (the bleaching sequence being D0E 1D 1 E2D2) were treated by the oxidative Fenton method (H20rFeS04) to decompose organic pollutants contammg adsorbable organic halogens (AOX). Experiments designed using the Taguchi method were applied to predict the process conditions that would result in a cost-effective and adequate removal of AOX. In addition to the composition and concentration of the reagents (H202 and Fe2+), the main process parameters selected were temperature and reaction time, while pH was adj usted to an approximate value of 4 (the volumetric ratio of the mixed effluents D0:E 1 was 3 :2). The results indicated that an AOX removal of about 70% for this mixture ( corresponding to about 50% for the mill) was achieved when the eftluent samples were treated for 60 min at 70°C with H202 and Fe2+ at a concentration of 1 600 mg/1 and 28 mg/1, respectively.


2020 ◽  
Vol 27 (14) ◽  
pp. 2335-2360 ◽  
Author(s):  
Chao Li ◽  
Dayong Shi

: Marine organisms are abundant sources of bioactive natural products. Among metabolites produced by sponges and their associated microbial communities, halogenated natural compounds accounted for an important part due to their potent biological activities. The present review updates and compiles a total of 258 halogenated organic compounds isolated in the past three decades, especially brominated derivatives derived from 31 genera of marine sponges. These compounds can be classified as the following classes: brominated polyunsaturated lipids, nitrogen compounds, brominated tyrosine derivatives and other halogenated compounds. These substances were listed together with their source organisms, structures and bioactivities. For this purpose, 84 references were consulted.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jia Wang ◽  
Jiawei Liang ◽  
Yonghong Li ◽  
Lingmin Tian ◽  
Yongjun Wei

AbstractXylanases are widely used enzymes in the food, textile, and paper industries. Most efficient xylanases have been identified from lignocellulose-degrading microbiota, such as the microbiota of the cow rumen and the termite hindgut. Xylanase genes from efficient pulp and paper wastewater treatment (PPWT) microbiota have been previously recovered by metagenomics, assigning most of the xylanase genes to the GH10 family. In this study, a total of 40 GH10 family xylanase genes derived from a certain PPWT microbiota were cloned and expressed in Escherichia coli BL21 (DE3). Among these xylanase genes, 14 showed xylanase activity on beechwood substrate. Two of these, PW-xyl9 and PW-xyl37, showed high activities, and were purified to evaluate their xylanase properties. Values of optimal pH and temperature for PW-xyl9 were pH 7 and 60 ℃, respectively, while those for PW-xyl37 were pH 7 and 55 ℃, respectively; their specific xylanase activities under optimal conditions were 470.1 U/mg protein and 113.7 U/mg protein, respectively. Furthermore, the Km values of PW-xyl9 and PW-xyl37 were determined as 8.02 and 18.8 g/L, respectively. The characterization of these two xylanases paves the way for potential application in future pulp and paper production and other industries, indicating that PPWT microbiota has been an undiscovered reservoir of efficient lignocellulase genes. This study demonstrates that a metagenomic approach has the potential to screen efficient xylanases of uncultured microorganisms from lignocellulose-degrading microbiota. In a similar way, other efficient lignocellulase genes might be identified from PPWT treatment microbiota in the future.


2020 ◽  
Vol 6 ◽  
pp. 770-775 ◽  
Author(s):  
J.P. Ribeiro ◽  
C.C. Marques ◽  
I. Portugal ◽  
M.I. Nunes

Sign in / Sign up

Export Citation Format

Share Document