Uniform-Parameter Spline Method for Solving Non-Fourier Heat Conduction Problems

2009 ◽  
Vol 56 (4) ◽  
pp. 293-306 ◽  
Author(s):  
Chi-Chang Wang ◽  
Zong-Yi Lee
2016 ◽  
Vol 63 (1) ◽  
pp. 129-144
Author(s):  
Mohammad Javad Noroozi ◽  
Seyfolah Saedodin ◽  
Davood Domiri Ganji

Abstract The effect of laser, as a heat source, on a one-dimensional finite body was studied in this paper. The Cattaneo-Vernotte non-Fourier heat conduction model was used for thermal analysis. The thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The obtained equations were solved using the approximate-analytical Adomian Decomposition Method (ADM). It was concluded that the non-linear analysis is important in non-Fourier heat conduction problems. Significant differences were observed between the Fourier and non-Fourier solutions which stresses the importance of non-Fourier solutions in the similar problems.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Liqiu Wang ◽  
Xiaohao Wei

We synthesize eight kinds of nanofluids with controllable microstructures by a chemical solution method (CSM) and develop a theory of macroscale heat conduction in nanofluids. By the CSM, we can easily vary and manipulate nanofluid microstructures through adjusting synthesis parameters. Our theory shows that heat conduction in nanofluids is of a dual-phase-lagging type instead of the postulated and commonly used Fourier heat conduction. Due to the coupled conduction of the two phases, thermal waves and possibly resonance may appear in nanofluid heat conduction. Such waves and resonance are responsible for the conductivity enhancement. Our theory also generalizes nanofluids into thermal-wave fluids in which heat conduction can support thermal waves. We emulsify olive oil into distilled water to form a new type of thermal-wave fluids that can support much stronger thermal waves and resonance than all reported nanofluids, and consequently extraordinary water conductivity enhancement (up to 153.3%) by adding some olive oil that has a much lower conductivity than water.


2016 ◽  
Vol 7 (2) ◽  
pp. 150-166 ◽  
Author(s):  
Péter Ván

Abstract The experimental basis and theoretical background of non-Fourier heat conduction is shortly reviewed from the point of view of non-equilibrium thermodynamics. The performance of different theories is compared in case of heat pulse experiments.


Sign in / Sign up

Export Citation Format

Share Document