Parallel use of hand gestures and force‐input device for interacting with 3d and virtual reality environments

1994 ◽  
Vol 6 (4) ◽  
pp. 391-413 ◽  
Author(s):  
Monica Bordegoni
2020 ◽  
Vol 6 (3) ◽  
pp. 127-130
Author(s):  
Max B. Schäfer ◽  
Kent W. Stewart ◽  
Nico Lösch ◽  
Peter P. Pott

AbstractAccess to systems for robot-assisted surgery is limited due to high costs. To enable widespread use, numerous issues have to be addressed to improve and/or simplify their components. Current systems commonly use universal linkage-based input devices, and only a few applicationoriented and specialized designs are used. A versatile virtual reality controller is proposed as an alternative input device for the control of a seven degree of freedom articulated robotic arm. The real-time capabilities of the setup, replicating a system for robot-assisted teleoperated surgery, are investigated to assess suitability. Image-based assessment showed a considerable system latency of 81.7 ± 27.7 ms. However, due to its versatility, the virtual reality controller is a promising alternative to current input devices for research around medical telemanipulation systems.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 715
Author(s):  
Alexander Schäfer ◽  
Gerd Reis ◽  
Didier Stricker

Virtual Reality (VR) technology offers users the possibility to immerse and freely navigate through virtual worlds. An important component for achieving a high degree of immersion in VR is locomotion. Often discussed in the literature, a natural and effective way of controlling locomotion is still a general problem which needs to be solved. Recently, VR headset manufacturers have been integrating more sensors, allowing hand or eye tracking without any additional required equipment. This enables a wide range of application scenarios with natural freehand interaction techniques where no additional hardware is required. This paper focuses on techniques to control teleportation-based locomotion with hand gestures, where users are able to move around in VR using their hands only. With the help of a comprehensive study involving 21 participants, four different techniques are evaluated. The effectiveness and efficiency as well as user preferences of the presented techniques are determined. Two two-handed and two one-handed techniques are evaluated, revealing that it is possible to move comfortable and effectively through virtual worlds with a single hand only.


Author(s):  
Lorenzo Micaroni ◽  
Marina Carulli ◽  
Francesco Ferrise ◽  
Monica Bordegoni ◽  
Alberto Gallace

This research aims to design and develop an innovative system, based on an olfactory display, to be used for investigating the directionality of the sense of olfaction. In particular, the design of an experimental setup to understand and determine to what extent the sense of olfaction is directional and whether there is prevalence of the sense of vision over the one of smell when determining the direction of an odor, is described. The experimental setup is based on low cost Virtual Reality (VR) technologies. In particular, the system is based on a custom directional olfactory display, an Oculus Rift Head Mounted Display (HMD) to deliver both visual and olfactory cues and an input device to register subjects’ answers. The VR environment is developed in Unity3D. The paper describes the design of the olfactory interface as well as its integration with the overall system. Finally the results of the initial testing are reported in the paper.


Author(s):  
Faizah Maarof ◽  
Hizmawati Madzin ◽  
Noris Mohd Norowi ◽  
Puteri Suhaiza Sulaiman ◽  
Mas Nida Md Khambari

1993 ◽  
Vol 2 (2) ◽  
pp. 104-111 ◽  
Author(s):  
Ken-ichi Kameyama ◽  
Koichi Ohtomi

This paper describes a newly developed 3-D shape modeling system, in which a user can design a free-form surface as if he or she actually manipulates a flexible object made from rubber or clay. Such reality can be realized in the system without any encumbering devices like goggles, glasses, or gloves, which is impossible in conventional virtual reality systems. The system is composed of a volume scanning display for presenting a surface image in a real 3-D space, a multisensory input device for detecting the force for deformation, and a half-silvered mirror for spatial superposition of the image onto the input device. A user can directly manipulate a free-form surface by virtually pushing the image, actually pushing the input device, and at the same time, he or she can feel the input device resist its actual deformation as the resisting force of the virtual surface. The system has several types of deforming models, and two types of free-form surfaces that have different curvatures have been experimentally created.


Procedia CIRP ◽  
2020 ◽  
Vol 90 ◽  
pp. 648-653 ◽  
Author(s):  
Manoch Numfu ◽  
Andreas Riel ◽  
Frédéric Noël

Sign in / Sign up

Export Citation Format

Share Document