This article on ‘Micro-machining: An Overview (Part II)’ is in continuation to ‘Micro-machining: An Overview (Part I)’ published in this journal ( Journal of Micromanufacturing). It consists of four parts, namely, electrochemical micro-texturing, electrochemical spark micro-machining, molecular dynamics simulation and sustainability issues of micro-machining processes. Electrochemical micro-texturing (ECMTex) deals with various techniques developed for micro-texturing on different types of workpiece-surfaces, namely, flat, curved and free-form surfaces. Here, basically two categories of techniques have been reviewed, namely, with mask and without mask. It also deals with ‘single point tool micro-texturing’ which turns out to be a single-step technique requiring minimum time, but the accuracy and repeatability obtained after micro-texturing need to be critically analysed. For mass production, one needs to go for sinking kind of ECMTex processes. Electrochemical spark micro-machining (ECSMM) is an interesting hybrid (ECM+EDM) process which can be applied for electrically conducting as well as electrically non-conducting materials. However, the work reported in this article deals only with the electrically non-conducting materials for which this process was initially developed. This process has a lot of potential for theoretical work to be done. In this article, two theories of sparking/discharging have been briefly mentioned: single bubble discharging/sparking and single surface discharging. It also dicusses its applications for different types of electrically non-conducting materials. Molecular dynamics simulation (MDS) of micro-/nano-machining processes is very important, but it is very cumbersome to understand at atomic/molecular scale. In these processes, the material behaviour at micro-/nano-level machining is completely different as compared to bulk-machining (macro-machining) processes. Hence, some fundamentals of MDS have been discussed. It just gives the idea of available techniques, softwares and models for different types of processes. However, there is the need of further research work to be done for clearly understanding the MDS of micro-/nano-machining. In the end, the sustainability of micro-machining issues have been discussed, mainly based on the energy consumption per unit mass of production. It is concluded that the advanced micro-manufacturing processes are highly energy-intensive processes, and they need further studies to be done for making them more suitable from sustainability point of view. At the end of each section, some potential areas of research for enhancing the accuracy and repeatability, and minimising the production time of each process have been discussed.