scholarly journals Development of L-carnosine functionalized iron oxide nanoparticles loaded with dexamethasone for simultaneous therapeutic potential of blood brain barrier crossing and ischemic stroke treatment

Drug Delivery ◽  
2021 ◽  
Vol 28 (1) ◽  
pp. 380-389
Author(s):  
Xianfeng Lu ◽  
Yaohui Zhang ◽  
Lixiang Wang ◽  
Guichen Li ◽  
Jianyuan Gao ◽  
...  
2020 ◽  
Vol 76 (4) ◽  
pp. 1527-1539
Author(s):  
Lorena Gárate-Vélez ◽  
Claudia Escudero-Lourdes ◽  
Daniela Salado-Leza ◽  
Armando González-Sánchez ◽  
Ildemar Alvarado-Morales ◽  
...  

2016 ◽  
Vol 4 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Qingxin Mu ◽  
Guanyou Lin ◽  
Victoria K. Patton ◽  
Kui Wang ◽  
Oliver W. Press ◽  
...  

Nanoparticles bearing gemcitabine and chlorotoxin show efficient cancer cell uptake and killing, extended blood half-life, and blood–brain barrier penetration.


2018 ◽  
Vol 6 (2) ◽  
pp. 314-323 ◽  
Author(s):  
Angela Ivask ◽  
Emily H. Pilkington ◽  
Thomas Blin ◽  
Aleksandr Käkinen ◽  
Heiki Vija ◽  
...  

Phosphoryl choline grafting secured high cellular uptake and increased transcytosis of superparamagnetic iron oxide nanoparticles through a model blood brain barrier.


2021 ◽  
Vol 22 (8) ◽  
pp. 4207
Author(s):  
Nikola Tułowiecka ◽  
Dariusz Kotlęga ◽  
Andrzej Bohatyrewicz ◽  
Małgorzata Szczuko

Introduction: Cardiovascular diseases including stroke are one of the most common causes of death. Their main cause is atherosclerosis and chronic inflammation in the body. An ischemic stroke may occur as a result of the rupture of unstable atherosclerotic plaque. Cardiovascular diseases are associated with uncontrolled inflammation. The inflammatory reaction produces chemical mediators that stimulate the resolution of inflammation. One of these mediators is lipoxins—pro-resolving mediators that are derived from the omega-6 fatty acid family, promoting inflammation relief and supporting tissue regeneration. Aim: The aim of the study was to review the available literature on the therapeutic potential of lipoxins in the context of ischemic stroke. Material and Methods: Articles published up to 31 January 2021 were included in the review. The literature was searched on the basis of PubMed and Embase in terms of the entries: ‘stroke and lipoxin’ and ‘stroke and atherosclerosis’, resulting in over 110 articles in total. Studies that were not in full-text English, letters to the editor, and conference abstracts were excluded. Results: In animal studies, the injection/administration of lipoxin A4 improved the integrity of the blood–brain barrier (BBB), decreased the volume of damage caused by ischemic stroke, and decreased brain edema. In addition, lipoxin A4 inhibited the infiltration of neutrophils and the production of cytokines and pro-inflammatory chemokines, such as interleukin (Il-1β, Il-6, Il-8) and tumor necrosis factor-α (TNF-α). The beneficial effects were also observed after introducing the administration of lipoxin A4 analog—BML-111. BML-111 significantly reduces the size of a stroke and protects the cerebral cortex, possibly by reducing the permeability of the blood–brain barrier. Moreover, more potent than lipoxin A4, it has an anti-inflammatory effect by inhibiting the production of pro-inflammatory cytokines and increasing the amount of anti-inflammatory cytokines. Conclusions: Lipoxins and their analogues may find application in reducing damage caused by stroke and improving the prognosis of patients after ischemic stroke.


2020 ◽  
Vol 11 ◽  
Author(s):  
Keqing Nian ◽  
Ian C. Harding ◽  
Ira M. Herman ◽  
Eno E. Ebong

Ischemic stroke, a major cause of mortality in the United States, often contributes to disruption of the blood-brain barrier (BBB). The BBB along with its supportive cells, collectively referred to as the “neurovascular unit,” is the brain’s multicellular microvasculature that bi-directionally regulates the transport of blood, ions, oxygen, and cells from the circulation into the brain. It is thus vital for the maintenance of central nervous system homeostasis. BBB disruption, which is associated with the altered expression of tight junction proteins and BBB transporters, is believed to exacerbate brain injury caused by ischemic stroke and limits the therapeutic potential of current clinical therapies, such as recombinant tissue plasminogen activator. Accumulating evidence suggests that endothelial mechanobiology, the conversion of mechanical forces into biochemical signals, helps regulate function of the peripheral vasculature and may similarly maintain BBB integrity. For example, the endothelial glycocalyx (GCX), a glycoprotein-proteoglycan layer extending into the lumen of bloods vessel, is abundantly expressed on endothelial cells of the BBB and has been shown to regulate BBB permeability. In this review, we will focus on our understanding of the mechanisms underlying BBB damage after ischemic stroke, highlighting current and potential future novel pharmacological strategies for BBB protection and recovery. Finally, we will address the current knowledge of endothelial mechanotransduction in BBB maintenance, specifically focusing on a potential role of the endothelial GCX.


ACS Nano ◽  
2018 ◽  
Vol 12 (7) ◽  
pp. 6794-6805 ◽  
Author(s):  
Qunqun Bao ◽  
Ping Hu ◽  
Yingying Xu ◽  
Tiansheng Cheng ◽  
Chenyang Wei ◽  
...  

2017 ◽  
Vol 9 ◽  
pp. 117957351769380 ◽  
Author(s):  
Hrvoje Brzica ◽  
Wazir Abdullahi ◽  
Kathryn Ibbotson ◽  
Patrick T Ronaldson

Ischemic stroke is a leading cause of morbidity and mortality in the United States. The only approved pharmacologic treatment for ischemic stroke is thrombolysis via recombinant tissue plasminogen activator (r-tPA). A short therapeutic window and serious adverse events (ie, hemorrhage, excitotoxicity) greatly limit r-tPA therapy, which indicates an essential need to develop novel stroke treatment paradigms. Transporters expressed at the blood-brain barrier (BBB) provide a significant opportunity to advance stroke therapy via central nervous system delivery of drugs that have neuroprotective properties. Examples of such transporters include organic anion–transporting polypeptides (Oatps) and organic cation transporters (Octs). In addition, multidrug resistance proteins (Mrps) are transporter targets in brain microvascular endothelial cells that can be exploited to preserve BBB integrity in the setting of stroke. Here, we review current knowledge on stroke pharmacotherapy and demonstrate how endogenous BBB transporters can be targeted for improvement of ischemic stroke treatment.


2019 ◽  
Vol 9 (1) ◽  
pp. 16 ◽  
Author(s):  
Imama Naqvi ◽  
Emi Hitomi ◽  
Richard Leigh

Objective: To report a patient in whom an acute ischemic stroke precipitated chronic blood-brain barrier (BBB) disruption and expansion of vascular white matter hyperintensities (WMH) into regions of normal appearing white matter (NAWM) during the following year. Background: WMH are a common finding in patients with vascular risk factors such as a history of stroke. The pathophysiology of WMH is not fully understood; however, there is growing evidence to suggest that the development of WMH may be preceded by the BBB disruption in the NAWM. Methods: We studied a patient enrolled in the National Institutes of Health Natural History of Stroke Study who was scanned with magnetic resonance imaging (MRI) after presenting to the emergency room with an acute stroke. After a treatment with IV tPA, she underwent further MRI scanning at 2 h, 24 h, 5 days, 30 days, 90 days, 6 months, and 1-year post stroke. BBB permeability images were generated from the perfusion weighted imaging (PWI) source images. MRIs from each time point were co-registered to track changes in BBB disruption and WMH over time. Results: An 84-year-old woman presented after acute onset right hemiparesis, right-sided numbness and aphasia with an initial NIHSS of 13. MRI showed diffusion restriction in the left frontal lobe and decreased blood flow on perfusion imaging. Fluid attenuated inversion recovery (FLAIR) imaging showed bilateral confluent WMH involving the deep white matter and periventricular regions. She was treated with IV tPA without complication and her NIHSS improved initially to 3 and ultimately to 0. Permeability maps identified multiple regions of chronic BBB disruption remote from the acute stroke, predominantly spanning the junction of WMH and NAWM. The severity of BBB disruption was greatest at 24 h after the stroke but persisted on subsequent MRI scans. Progression of WMH into NAWM over the year of observation was detected bilaterally but was most dramatic in the regions adjacent to the initial stroke. Conclusions: WMH-associated BBB disruption may be exacerbated by an acute stroke, even in the contralateral hemisphere, and can persist for months after the initial event. Transformation of NAWM to WMH may be evident in areas of BBB disruption within a year after the stroke. Further studies are needed to investigate the relationship between chronic BBB disruption and progressive WMH in patients with a history of cerebrovascular disease and the potential for acute stroke to trigger or exacerbate the process leading to the development of WMH.


Sign in / Sign up

Export Citation Format

Share Document