iron oxide nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

5253
(FIVE YEARS 1519)

H-INDEX

147
(FIVE YEARS 23)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 204
Author(s):  
María Gabriela Montiel Schneider ◽  
María Julia Martín ◽  
Jessica Otarola ◽  
Ekaterina Vakarelska ◽  
Vasil Simeonov ◽  
...  

The enormous development of nanomaterials technology and the immediate response of many areas of science, research, and practice to their possible application has led to the publication of thousands of scientific papers, books, and reports. This vast amount of information requires careful classification and order, especially for specifically targeted practical needs. Therefore, the present review aims to summarize to some extent the role of iron oxide nanoparticles in biomedical research. Summarizing the fundamental properties of the magnetic iron oxide nanoparticles, the review’s next focus was to classify research studies related to applying these particles for cancer diagnostics and therapy (similar to photothermal therapy, hyperthermia), in nano theranostics, multimodal therapy. Special attention is paid to research studies dealing with the opportunities of combining different nanomaterials to achieve optimal systems for biomedical application. In this regard, original data about the synthesis and characterization of nanolipidic magnetic hybrid systems are included as an example. The last section of the review is dedicated to the capacities of magnetite-based magnetic nanoparticles for the management of oncological diseases.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Elena Álvarez ◽  
Manuel Estévez ◽  
Alvaro Gallo-Cordova ◽  
Blanca González ◽  
Rafael R. Castillo ◽  
...  

A crucial challenge to face in the treatment of biofilm-associated infection is the ability of bacteria to develop resistance to traditional antimicrobial therapies based on the administration of antibiotics alone. This study aims to apply magnetic hyperthermia together with controlled antibiotic delivery from a unique magnetic-responsive nanocarrier for a combination therapy against biofilm. The design of the nanosystem is based on antibiotic-loaded mesoporous silica nanoparticles (MSNs) externally functionalized with a thermo-responsive polymer capping layer, and decorated in the outermost surface with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are able to generate heat upon application of an alternating magnetic field (AMF), reaching the temperature needed to induce a change in the polymer conformation from linear to globular, therefore triggering pore uncapping and the antibiotic cargo release. The microbiological assays indicated that exposure of E. coli biofilms to 200 µg/mL of the nanosystem and the application of an AMF (202 kHz, 30 mT) decreased the number of viable bacteria by 4 log10 units compared with the control. The results of the present study show that combined hyperthermia and antibiotic treatment is a promising approach for the effective management of biofilm-associated infections.


Author(s):  
Joanna D Stachowska ◽  
Monika B Gamża ◽  
Claire Mellor ◽  
Ella N Gibbons ◽  
Marta J Krysmann ◽  
...  

We present a simple strategy to generate a family of carbon dot/iron oxide nanoparticles (C/Fe-NPs) that relies on the thermal decomposition of iron (III) acetylacetonate in the presence of a highly fluorescent carbon-rich precursor, while polyethylene glycol serves as the passivation agent. By varying the molar ratio of the reactants, a series of C/Fe-NPs have been synthesized with tuneable elemental composition in terms of C, H, O, N, Fe. The quantum yield is enhanced from 6% to 9% as the carbon content increases from 27% to 36%, while the room temperature saturation magnetization is improved from 4.1 emu/g to 17.7 emu/g as the iron content is enriched from 17 to 31%. In addition, the C/Fe-NPs show excellent antimicrobial properties, minimal cytotoxicity and demonstrate promising bioimaging capabilities, thus showing great potential for the development of advanced diagnostic tools.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 181
Author(s):  
Manuel Estévez ◽  
Giorgia Montalbano ◽  
Alvaro Gallo-Cordova ◽  
Jesús G. Ovejero ◽  
Isabel Izquierdo-Barba ◽  
...  

Nowadays, there is an ever-increasing interest in the development of systems able to guide and influence cell activities for bone regeneration. In this context, we have explored for the first time the combination of type-I collagen and superparamagnetic iron oxide nanoparticles (SPIONs) to design magnetic and biocompatible electrospun scaffolds. For this purpose, SPIONs with a size of 12 nm were obtained by thermal decomposition and transferred to an aqueous medium via ligand exchange with dimercaptosuccinic acid (DMSA). The SPIONs were subsequently incorporated into type-I collagen solutions to prove the processability of the resulting hybrid formulation by means of electrospinning. The optimized method led to the fabrication of nanostructured scaffolds composed of randomly oriented collagen fibers ranging between 100 and 200 nm, where SPIONs resulted distributed and embedded into the collagen fibers. The SPIONs-containing electrospun structures proved to preserve the magnetic properties of the nanoparticles alone, making these matrices excellent candidates to explore the magnetic stimuli for biomedical applications. Furthermore, the biological assessment of these collagen scaffolds confirmed high viability, adhesion, and proliferation of both pre-osteoblastic MC3T3-E1 cells and human bone marrow-derived mesenchymal stem cells (hBM-MSCs).


Sign in / Sign up

Export Citation Format

Share Document