A CO Emission-Based Adaptive Signal Control for Isolated Intersections

Author(s):  
Ponlathep Lertworawanich ◽  
Panumas Unhasut
Author(s):  
M Sabbir Salek ◽  
Weimin Jin ◽  
Sakib Mahmud Khan ◽  
Mashrur Chowdhury ◽  
Patrick Gerard ◽  
...  

Author(s):  
S M A Bin Al Islam ◽  
Mehrdad Tajalli ◽  
Rasool Mohebifard ◽  
Ali Hajbabaie

The effectiveness of adaptive signal control strategies depends on the level of traffic observability, which is defined as the ability of a signal controller to estimate traffic state from connected vehicle (CV), loop detector data, or both. This paper aims to quantify the effects of traffic observability on network-level performance, traffic progression, and travel time reliability, and to quantify those effects for vehicle classes and major and minor directions in an arterial corridor. Specifically, we incorporated loop detector and CV data into an adaptive signal controller and measured several mobility- and event-based performance metrics under different degrees of traffic observability (i.e., detector-only, CV-only, and CV and loop detector data) with various CV market penetration rates. A real-world arterial street of 10 intersections in Seattle, Washington was simulated in Vissim under peak hour traffic demand level with transit vehicles. The results showed that a 40% CV market share was required for the adaptive signal controller using only CV data to outperform signal control with only loop detector data. At the same market penetration rate, signal control with CV-only data resulted in the same traffic performance, progression quality, and travel time reliability as the signal control with CV and loop detector data. Therefore, the inclusion of loop detector data did not further improve traffic operations when the CV market share reached 40%. Integrating 10% of CV data with loop detector data in the adaptive signal control improved traffic performance and travel time reliability.


2020 ◽  
Vol 47 ◽  
pp. 704-711
Author(s):  
Gorkem Akyol ◽  
Ismet Goksad Erdagi ◽  
Mehmet Ali Silgu ◽  
Hilmi Berk Celikoglu

Author(s):  
Yiheng Feng ◽  
Jianfeng Zheng ◽  
Henry X. Liu

Most of the existing connected vehicle (CV)-based traffic control models require a critical penetration rate. If the critical penetration rate cannot be reached, then data from traditional sources (e.g., loop detectors) need to be added to improve the performance. However, it can be expected that over the next 10 years or longer, the CV penetration will remain at a low level. This paper presents a real-time detector-free adaptive signal control with low penetration of CVs ([Formula: see text]10%). A probabilistic delay estimation model is proposed, which only requires a few critical CV trajectories. An adaptive signal control algorithm based on dynamic programming is implemented utilizing estimated delay to calculate the performance function. If no CV is observed during one signal cycle, historical traffic volume is used to generate signal timing plans. The proposed model is evaluated at a real-world intersection in VISSIM with different demand levels and CV penetration rates. Results show that the new model outperforms well-tuned actuated control regarding delay reduction, in all scenarios under only 10% penetrate rate. The results also suggest that the accuracy of historical traffic volume plays an important role in the performance of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document