simulation evaluation
Recently Published Documents


TOTAL DOCUMENTS

352
(FIVE YEARS 82)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Mitsutaka Yamaguchi ◽  
Nobuo Suzui ◽  
Yuto Nagao ◽  
Naoki Kawachi

Abstract Non-destructive monitoring of radioactivities derived from radioactive tracers at multiple points in plant stems can be used to evaluate the velocity of element transport in living plants. In this study, we calculated absorption-efficiency distributions for several detector geometries to determine appropriate shapes for non-destructive monitoring of radioactivities in the stem. The efficiency distributions were calculated by Monte Carlo simulations, and the flatnesses and spatial resolutions were evaluated. It was found that the placement of four detectors around the stem could limit the percentage of standard deviation to the mean of the pixel values to less than 5%. We could determine a compact detector geometry with the spatial resolution of 1.35 cm using four small detectors. The detection efficiencies were 0.014, 0.0030 and 0.00063 cm at the initial gamma-ray energies of 0.5, 1 and 2 MeV, which is sufficiently applicable to detect 10 kBq/cm of radioactivity.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110668
Author(s):  
Runlin Chen ◽  
Chen Du ◽  
Xiaotuan Wang ◽  
Yanchao Zhang ◽  
Kai Liu

Aiming at the dynamic characteristics test bench of sliding bearings, the dynamic model is established. Based on the forward and inverse dynamic problems of the bearing, a simulation evaluation method for the identification accuracy of the sliding bearing dynamic characteristics is proposed and the algorithm is verified. The identification errors of dynamic characteristic coefficients under different excitation frequencies are analyzed, the sensitivities of single frequency excitation method and dual-frequency excitation method to test error are contrastively analyzed, and the influence laws of dynamic characteristic identification accuracy of sliding bearing are evaluated. Based on which the traditional single frequency excitation method has been improved. The dynamic characteristic test should be carried out respectively in the low frequency range and the high frequency range. The main stiffness and cross damping are the average of two tests, the main damping is the identification value in the high frequency, and the cross stiffness is the identification value in the low frequency. That will effectively reduce the impact of test error. The obtained data and laws could support the improvement of the dynamic characteristics test method of sliding bearings and the confirmation of test parameters, thereby the accuracy of dynamic characteristics identification is improved.


2021 ◽  
Author(s):  
Masaya Murata ◽  
Isao Kawano ◽  
Koichi Inoue

2021 ◽  
Vol 8 ◽  
Author(s):  
Yuki Matsutani ◽  
Kenji Tahara ◽  
Hitoshi Kino

This study proposes two novel methods for determining the muscular internal force (MIF) based on joint stiffness, using an MIF feedforward controller for the musculoskeletal system. The controller was developed in a previous study, where we found that it could be applied to achieve any desired end-point position without the use of sensors, by providing the MIF as a feedforward input to individual muscles. However, achieving motion with good response and low stiffness using the system, posed a challenge. Furthermore, the controller was subject to an ill-posed problem, where the input could not be uniquely determined. We propose two methods to improve the control performance of this controller. The first method involves determining a MIF that can independently control the response and stiffness at a desired position, and the second method involves the definition of an arbitrary vector that describes the stiffnesses at the initial and desired positions to uniquely determine the MIF balance at each position. The numerical simulation results reported in this study demonstrate the effectiveness of both proposed methods.


2021 ◽  
Vol 23 (4) ◽  
pp. 678-684
Author(s):  
Jakub Lewandowski ◽  
Stanisław Młynarski ◽  
Robert Pilch ◽  
Maksymilian Smolnik ◽  
Jan Szybka ◽  
...  

The aim of the work was to develop a method of verification of the preventive renewal strategies, which enables a simulation evaluation of the effects of the application of a specific schedule of inspections of parts that are important in the operation of complex renewable technical objects. Using it requires having an already established schedule of inspections, and the result of applying the method is determined by indicators that assess the usefulness of the strategy, even before implementation. The developed computational tool was used to evaluate the renewal strategy of the current collector contact plates. Based on the real operational data, several renewal intervals were considered, determining the frequency of events involving the plate covering a specific mileage, from exceeding the wear control limit value to the next inspection (replacement). The proposed verification method is an important tool for testing and planning technical inspections for systems and elements with planned wear, and parts are periodically replaced.


Author(s):  
Gael Cantet ◽  
Alienor Berges ◽  
Rhianna O’Sullivan ◽  
Sarit Cohen‐Rabbie ◽  
Corina Dota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document