Analytical analysis of the dual-phase-lag model of bio-heat transfer with pulse boundary heat flux on skin tissue

Author(s):  
Ying Ze Wang ◽  
Mei Jun Li ◽  
Dong Liu
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamdy M. Youssef ◽  
Najat A. Alghamdi

Abstract This work is dealing with the temperature reaction and response of skin tissue due to constant surface heat flux. The exact analytical solution has been obtained for the two-temperature dual-phase-lag (TTDPL) of bioheat transfer. We assumed that the skin tissue is subjected to a constant heat flux on the bounding plane of the skin surface. The separation of variables for the governing equations as a finite domain is employed. The transition temperature responses have been obtained and discussed. The results represent that the dual-phase-lag time parameter, heat flux value, and two-temperature parameter have significant effects on the dynamical and conductive temperature increment of the skin tissue. The Two-temperature dual-phase-lag (TTDPL) bioheat transfer model is a successful model to describe the behavior of the thermal wave through the skin tissue.


2019 ◽  
Vol 17 (09) ◽  
pp. 1950069
Author(s):  
Wen-Lih Chen ◽  
Kuo-Chi Liu ◽  
Yu-Ching Yang ◽  
Haw-Long Lee ◽  
Win-Jin Chang

An inverse analysis technique based on the conjugate gradient method (CGM) and the discrepancy principle is employed to estimate the time-wise variation of the unknown cooling heat flux in the spray cooling of a hot surface. In contrast to previous studies, the heat conduction equation of the cooled surface is formulated using a dual-phase-lag (DPL) model. In addition, no assumptions are made regarding the functional form of the cooling heat flux. The simulation data required to conduct the inverse analysis are generated by adding random errors to the calculated exact temperatures at the boundaries and interior of the hot body. The validity of the inverse solutions is demonstrated numerically by means of two illustrative examples. Moreover, the sensitivity of the estimation results to the measurement error and measurement location is systematically explored. Overall, the results show that the proposed method provides a robust and accurate approach for estimating the unknown time-dependent cooling heat flux in typical industrial spray cooling applications.


2018 ◽  
Vol 14 (5) ◽  
pp. 837-856 ◽  
Author(s):  
Gaurav Mittal ◽  
Vinayak Kulkarni

Purpose The purpose of this paper is to frame a dual-phase-lag model using the fractional theory of thermoelasticity with relaxation time. The generalized Fourier law of heat conduction based upon Tzou model that includes temperature gradient, the thermal displacement and two different translations of heat flux vector and temperature gradient has been used to formulate the heat conduction model. The microstructural interactions and corresponding thermal changes have been studied due to the involvement of relaxation time and delay time translations. This results in achieving the finite speed of thermal wave. Classical coupled and generalized thermoelasticity theories are recovered by considering the various special cases for different order of fractional derivatives and two different translations under consideration. Design/methodology/approach The work presented in this manuscript proposes a dual-phase-lag mathematical model of a thick circular plate in a finite cylindrical domain subjected to axis-symmetric heat flux. The model has been designed in the context of fractional thermoelasticity by considering two successive terms in Taylor’s series expansion of fractional Fourier law of heat conduction in the two different translations of heat flux vector and temperature gradient. The analytical results have been obtained in Laplace transform domain by transforming the original problem into eigenvalue problem using Hankel and Laplace transforms. The numerical inversions of Laplace transforms have been achieved using the Gaver−Stehfast algorithm, and convergence criterion has been discussed. For illustrative purpose, the dual-phase-lag model proposed in this manuscript has been applied to a periodically varying heat source. The numerical results have been depicted graphically and compared with classical, fractional and generalized thermoelasticity for various fractional orders under consideration. Findings The microstructural interactions and corresponding thermal changes have been studied due to the involvement of relaxation time and delay time translations. This results in achieving the finite speed of thermal wave. Classical coupled and generalized thermoelasticity theories are recovered by considering the various special cases for different order of fractional derivatives and two different translations under consideration. This model has been applied to study the thermal effects in a thick circular plate subjected to a periodically varying heat source. Practical implications A dual-phase-lag model can effectively be incorporated to study the transient heat conduction problems for an exponentially decaying pulse boundary heat flux and/or for a short-pulse boundary heat flux in long solid tubes and cylinders. This model is also applicable to study the various effects of the thermal lag ratio and the shift time. These dual-phase-lag models are also practically applicable in the problems of modeling of nanoscale heat transport problems of semiconductor devices and accordingly semiconductors can be classified as per their ability of heat conduction. Originality/value To the authors’ knowledge, no one has discussed fractional thermoelastic dual-phase-lag problem associated with relaxation time in a finite cylindrical domain for a thick circular plate subjected to an axis-symmetric heat source. This is the latest and novel contribution to the field of thermal mechanics.


2011 ◽  
Vol 15 (suppl. 1) ◽  
pp. 61-67 ◽  
Author(s):  
Kuo-Chi Liu ◽  
Po-Jen Cheng ◽  
Yan-Nan Wang

This paper studies the effect of micro-structural interaction on bioheat transfer in skin, which was stratified into epidermis, dermis, and subcutaneous. A modified non-Fourier equation of bio-heat transfer was developed based on the second-order Taylor expansion of dual-phase-lag model and can be simplified as the bio-heat transfer equations derived from Pennes? model, thermal wave model, and the linearized form of dual-phase-lag model. It is a fourth order partial differential equation, and the boundary conditions at the interface between two adjacent layers become complicated. There are mathematical difficulties in dealing with such a problem. A hybrid numerical scheme is extended to solve the present problem. The numerical results are in a good agreement with the contents of open literature. It evidences the rationality and reliability of the present results.


Sign in / Sign up

Export Citation Format

Share Document