scholarly journals Analysis of non-Fourier thermal behavior for multi-layer skin model

2011 ◽  
Vol 15 (suppl. 1) ◽  
pp. 61-67 ◽  
Author(s):  
Kuo-Chi Liu ◽  
Po-Jen Cheng ◽  
Yan-Nan Wang

This paper studies the effect of micro-structural interaction on bioheat transfer in skin, which was stratified into epidermis, dermis, and subcutaneous. A modified non-Fourier equation of bio-heat transfer was developed based on the second-order Taylor expansion of dual-phase-lag model and can be simplified as the bio-heat transfer equations derived from Pennes? model, thermal wave model, and the linearized form of dual-phase-lag model. It is a fourth order partial differential equation, and the boundary conditions at the interface between two adjacent layers become complicated. There are mathematical difficulties in dealing with such a problem. A hybrid numerical scheme is extended to solve the present problem. The numerical results are in a good agreement with the contents of open literature. It evidences the rationality and reliability of the present results.

2013 ◽  
Vol 479-480 ◽  
pp. 496-500
Author(s):  
Kuo Chi Liu ◽  
Cheng Chi Wang ◽  
Po Jen Cheng

This paper investigates the thermal behavior in laser-irradiated layered tissue, which was stratified into skin, fat, and muscle. A modified nonFourier equation of bio-heat transfer was developed based on the second-order Taylor expansion of dual-phase lag model. This equation is a fourth order partial differential equation and can be simplified as the bio-heat transfer equations derived from Pennes model, thermal wave model, and the linearized form of dual-phase lag model. The boundary conditions at the interface between two adjacent layers become complicated. There are mathematical difficulties in dealing with such a problem. A hybrid numerical scheme is extended to solve the present problem. The deviations of the results from the bio-heat transfer equations based on Pennes model, thermal wave model and dual-phase lag model are presented and discussed.


2021 ◽  
Author(s):  
Xiaoya Li ◽  
Yan Li ◽  
Pengfei Luo ◽  
Xiao Geng Tian

Abstract Lots of generalized heat conduction models have been developed in recent decades, such as local thermal non-equilibrium model, phase lagging model and nonlocal heat conduction model. But no attempt was made to prove which model is better (or worse) than others, or whether there is a certain relationship between these different models. With this inspiration, we establish the nonlocal bioheat transfer equations with lagging time, and the two and three-temperature bioheat transfer equations with considering all the carries' heat conduction effect are also constructed. Comparing the two (or three)-temperature equation model with the nonlocal bioheat transfer models with lagging time, one may obtain: the lagging time tt of temperature gradient and the nonlocal characteristic length ?q in the space derivative items of heat flux have the same effect on heat transfer; when the heat transport occur among N energy carriers with considering the conduction effects of all carries, the heat transfer process are depend on the high-order effect of tqN-1, ttN-1 and ?t(2N-1) in nonlocal dual phase lag bioheat transfer model. This phenomenon is very important for biological and medical systems where numerous carriers may exist on the cellular level.


Sign in / Sign up

Export Citation Format

Share Document