Short-term high-Intensity interval training increases systemic brain-derived neurotrophic factor (BDNF) in healthy women

2019 ◽  
Vol 20 (4) ◽  
pp. 516-524 ◽  
Author(s):  
Iván Rentería ◽  
Patricia C. García-Suárez ◽  
David O. Martínez-Corona ◽  
José Moncada-Jiménez ◽  
Eric P. Plaisance ◽  
...  
Author(s):  
Inmaculada C. Martínez-Díaz ◽  
María C. Escobar-Muñoz ◽  
Luis Carrasco

High-intensity interval training (HIIT) is considered one of the most effective methods for improving cardiorespiratory and metabolic functions. However, it is necessary to clarify their effects on neurophysiological responses and coginitive functioning. Thus, this study aimed to determine the effects of an acute bout of HIIT on neurocognitive and stress-related biomarkers and their association with working memory (WM) capacity in healthy young adults. Twenty-five male college students performed a single bout of HIIT consisting of 10 × 1 min of cycling at their VO2 peak power output. Plasma Brain-Derived Neurotrophic Factor (BDNF) and cortisol (CORT) levels, and WM (Digit Span Test (DST)), were assessed pre-, post- and 30 min post-intervention. Significant post-exercise increases in circulating BDNF and CORT levels were observed coinciding with the highest DST performance; however, no statistical associations were found between cognitive and neurophysiological variables. Moreover, DST scores obtained 30 min after exercise remained higher than those assessed at pre-exercise. In conclusion, the stress induced by a single bout of HIIT induces a remarkable response of BDNF and CORT boosting WM capacity in healthy young males. Future research should clarify the association between cognitive and neurobiological markers during intense exercise stimulation.


2018 ◽  
Vol 12 ◽  
Author(s):  
Alberto Jiménez-Maldonado ◽  
Iván Rentería ◽  
Patricia C. García-Suárez ◽  
José Moncada-Jiménez ◽  
Luiz Fernando Freire-Royes

2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 905-906
Author(s):  
Michael J. Ormsbee ◽  
Amber W. Kinsey ◽  
Minwook Chong ◽  
Heather S. Friedman ◽  
Tonya Dodge ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zhaowei Kong ◽  
Shengyan Sun ◽  
Min Liu ◽  
Qingde Shi

This study was to determine the effects of five-week high-intensity interval training (HIIT) on cardiorespiratory fitness, body composition, blood glucose, and relevant systemic hormones when compared to moderate-intensity continuous training (MICT) in overweight and obese young women.Methods. Eighteen subjects completed 20 sessions of HIIT or MICT for five weeks. HIIT involved 60 × 8 s cycling at ~90% of peak oxygen consumption (V˙O2peak) interspersed with 12 s recovery, whereas MICT involved 40-minute continuous cycling at 65% ofV˙O2peak.V˙O2peak, body composition, blood glucose, and fasting serum hormones, including leptin, growth hormone, testosterone, cortisol, and fibroblast growth factor 21, were measured before and after training.Results. Both exercise groups achieved significant improvements inV˙O2peak(+7.9% in HIIT versus +11.7% in MICT) and peak power output (+13.8% in HIIT versus +21.9% in MICT) despite no training effects on body composition or the relevant systemic hormones. Blood glucose tended to be decreased after the intervention (p=0.062). The rating of perceived exertion in MICT was higher than that in HIIT (p=0.042).Conclusion. Compared with MICT, short-term HIIT is more time-efficient and is perceived as being easier for improving cardiorespiratory fitness and fasting blood glucose for overweight and obese young women.


2019 ◽  
Vol 14 (8) ◽  
pp. 1058-1065 ◽  
Author(s):  
Thomas Reeve ◽  
Ralph Gordon ◽  
Paul B. Laursen ◽  
Jason K.W. Lee ◽  
Christopher J. Tyler

Purpose: To investigate the effects of short-term, high-intensity interval-training (HIIT) heat acclimation (HA). Methods: Male cyclists/triathletes were assigned into either an HA (n = 13) or a comparison (COMP, n = 10) group. HA completed 3 cycling heat stress tests (HSTs) to exhaustion (60% Wmax; HST1, pre-HA; HST2, post-HA; HST3, 7 d post-HA). HA consisted of 30-min bouts of HIIT cycling (6 min at 50% Wmax, then 12 × 1-min 100%-Wmax bouts with 1-min rests between bouts) on 5 consecutive days. COMP completed HST1 and HST2 only. HST and HA trials were conducted in 35°C/50% relative humidity. Cycling capacity and physiological and perceptual data were recorded. Results: Cycling capacity was impaired after HIIT HA (77.2 [34.2] min vs 56.2 [24.4] min, P = .03) and did not return to baseline after 7 d of no HA (59.2 [37.4] min). Capacity in HST1 and HST2 was similar in COMP (43.5 [8.3] min vs 46.8 [15.7] min, P = .54). HIIT HA lowered resting rectal (37.0°C [0.3°C] vs 36.8°C [0.2°C], P = .05) and body temperature (36.0°C [0.3°C] vs 35.8°C [0.3°C], P = .03) in HST2 compared with HST1 and lowered mean skin temperature (35.4°C [0.5°C] vs 35.1°C [0.3°C], P = .02) and perceived strain on day 5 compared with day 1 of HA. All other data were unaffected. Conclusions: Cycling capacity was impaired in the heat after 5 d of consecutive HIIT HA despite some heat adaptation. Based on data, this approach is not recommended for athletes preparing to compete in the heat; however, it is possible that it may be beneficial if a state of overreaching is avoided.


2010 ◽  
Vol 42 ◽  
pp. 34-35
Author(s):  
Jenna B. Gillen ◽  
Jonathan P. Little ◽  
Zubin Punthakee ◽  
Mark A. Tarnopolsky ◽  
Martin J. Gibala

Sign in / Sign up

Export Citation Format

Share Document