Influence of model type, bias and input parameter variability on reliability analysis for simple limit states in soil–structure interaction problems

Author(s):  
Richard J. Bathurst ◽  
Sina Javankhoshdel
2019 ◽  
Vol 25 (6) ◽  
pp. 551-558
Author(s):  
Arnoldas Norkus ◽  
Vaidas Martinkus

The prediction of the behavior of structures interacting with soil is one of the main challenges in structural design. Accurate evaluation of soil–structure interaction ensures a rational design solution for the superstructure and foundation of a building. In structural analysis, one of the key problems is the identification of relevant movements of the foundation considering the interaction between the superstructure, foundation and ground (the soil mass around the foundation). The correct assessment of soil–structure interaction contributes to the rational constructional design of the superstructure and foundation and allows avoiding violations of requirements for ultimate and serviceability limit states possible due to unpredicted additional stress on the structural system. Resistance predictions for pile group foundations is a complex problem, which may be the reason for scattered and insufficient information available despite numerous experimental and numerical studies, predominated by the focus on partial empirical relationships. This experimental study analyzed the prototype of a short displacement pile group with a flexible pile cap in terms of the bearing capacity and deformation behavior while subjected to static axial vertical load. In particular, attention was given to the resistance–stiffness evolution of single piles acting in a pile group with different spacing. Test results of short displacement pile groups were used to verify known models for the bearing resistance prediction of the pile group.


2020 ◽  
Vol 16 (1) ◽  
pp. 39-48
Author(s):  
Parham Bakhtiari ◽  
Khosro Bargi

AbstractThe assessment of the seismic behavior of the high-speed railway bridges is necessary because of the strategic essence of these structures. Evaluating and predicting damages of the bridges that originated by earthquakes with various intensities can provide useful information, which is very helpful in the management of the possible crises. One of the most useful mechanisms for estimating earthquake damages to these bridges is the development of fragility curves for them. Studies on the production of fragility curves on the high-speed railway bridges are limited. In this research, the fragility curve is plotted for two high-speed railway bridges with different pier heights. Due to the differences in the height of these bridges, a comparison of the performance of these structures is also shown. The model of the high-speed railway bridge was created for each model separately in the SeismoStruct software. The soil-structure interaction is also modeled as springs, and its effects are considered. Nonlinear models are also used to model concrete and steel materials. Then, the incremental dynamic analysis was performed under different ground motion records. By using the obtained data from the analysis, appropriate damage states were selected, and finally, the fragility curves were plotted for different performance limit states. The results showed that with increasing pier height, the damage index was raised and for a constant probability of exceedance, the taller pier is demanded a lower spectral acceleration to achieve a performance level.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Quan Gu

In the context of performance-based earthquake engineering, reliability method has been of significant importance in performance and risk assessment of structures or soil-structure interaction (SSI) systems. The finite element (FE) reliability method combines FE analysis with state-of-the-art methods in reliability analysis and has been employed increasingly to estimate the probability of occurrence of failure events corresponding to various hazard levels (e.g., earthquakes with various intensity). In this paper, crucial components for FE reliability analysis are reviewed and summarized. Furthermore, recent advances in both time invariant and time variant reliability analysis methods for realistic nonlinear SSI systems are presented and applied to a two-dimensional two story building on layered soil. Various time invariant reliability analysis methods are applied, including the first-order reliability method (FORM), importance sampling method, and orthogonal plane sampling (OPS) method. For time variant reliability analysis, an upper bound of the failure probability is obtained from numerical integration of the mean outcrossing rate (MOCR). The MOCR is computed by using FORM analysis and OPS analysis. Results by different FE reliability methods are compared in terms of accuracy and computational cost. This paper provides valuable insights for reliability based probabilistic performance and risk assessment of SSI systems.


2022 ◽  
Vol 10 (1) ◽  
pp. 110
Author(s):  
Davide Forcellini ◽  
Daniele Mina ◽  
Hassan Karampour

Subsea high pressure/high temperature (HP/HT) pipelines may be significantly affected by the effects of soil structure interaction (SSI) when subjected to earthquakes. Numerical simulations are herein applied to assess the role of soil deformability on the seismic vulnerability of an unburied pipeline. Overcoming most of the contributions existing in the literature, this paper proposes a comprehensive 3D model of the system (soil + pipeline) by performing OpenSees that allows the representation of non-linear mechanisms of the soil and may realistically assess the induced damage caused by the mutual interaction of buckling and seismic loads. Analytical fragility curves are herein derived to evaluate the role of soil structure interaction in the assessment of the vulnerability of a benchmark HP/HT unburied subsea pipeline. The probability of exceeding selected limit states was based on the definition of credited failure criteria.


Sign in / Sign up

Export Citation Format

Share Document