Performance of retaining wall backfilled with tire aggregate under static and dynamic loading conditions: conventional designs and finite element simulations

Author(s):  
Shweta Shrestha ◽  
Nadarajah Ravichandran
Author(s):  
Jason P. Halloran ◽  
Anthony J. Petrella ◽  
Paul J. Rullkoetter

The success of current total knee replacement (TKR) devices is contingent on the kinematics and contact mechanics during in vivo activity. Indicators of potential clinical performance of total joint replacement devices include contact stress and area due to articulations, and tibio-femoral and patello-femoral kinematics. An effective way of evaluating these parameters during the design phase or before clinical use is via computationally efficient computer models. Previous finite element (FE) knee models have generally been used to determine contact stresses and/or areas during static or quasi-static loading conditions. The majority of knee models intended to predict relative kinematics have not been able to determine contact mechanics simultaneously. Recently, however, explicit dynamic finite element methods have been used to develop dynamic models of TKR able to efficiently determine joint and contact mechanics during dynamic loading conditions [1,2]. The objective of this research was to develop and validate an explicit FE model of a TKR which includes tibio-femoral and patello-femoral articulations and surrounding soft tissues. The six degree-of-freedom kinematics, kinetics and polyethylene contact mechanics during dynamic loading conditions were then predicted during gait simulation.


2007 ◽  
Vol 29 (3) ◽  
pp. 404-411 ◽  
Author(s):  
Gabriele Paolini ◽  
Ugo Della Croce ◽  
Patrick O. Riley ◽  
Frederic K. Newton ◽  
D. Casey Kerrigan

2014 ◽  
Vol 635 ◽  
pp. 41-44
Author(s):  
Miroslav Német ◽  
Mária Mihaliková ◽  
Alexandra Kovalčíkova ◽  
Anna Lišková

Currently, the automotive industry used sheets of different qualities. The most common include IF (inter Interstitial Free) steel and alloyed steel. Use the sheet quality depends on the point of application in the production car. Testing and product testing is a standard part of the process of innovation and production itself. Testing of automotive steels under dynamic conditions is increasingly important. Changing the hardness HV 1 was performed on the fractured bars on the static and dynamic loading conditions. Tests were made on steel IF and S 460.


Sign in / Sign up

Export Citation Format

Share Document