scholarly journals PepO is a target of the two-component systems VicRK and CovR required for systemic virulence of Streptococcus mutans

Virulence ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 521-536
Author(s):  
Lívia A. Alves ◽  
Tridib Ganguly ◽  
Érika N. Harth-Chú ◽  
Jessica Kajfasz ◽  
José A. Lemos ◽  
...  
Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3322-3332 ◽  
Author(s):  
Yongxing Gong ◽  
Xiao-Lin Tian ◽  
Tara Sutherland ◽  
Gary Sisson ◽  
Junni Mai ◽  
...  

Streptococcus mutans in dental biofilms is regularly exposed to cycles of acidic pH during the ingestion of fermentable dietary carbohydrates. The ability of S. mutans to tolerate low pH is crucial for its virulence and pathogenesis in dental caries. To better understand its acid tolerance mechanisms, we performed genome-wide transcriptional analysis of S. mutans in response to an acidic pH signal. The preliminary results showed that adaptation of S. mutans to pH 5.5 induced differential expression of nearly 14 % of the genes in the genome, including 169 upregulated genes and 108 downregulated genes, largely categorized into nine functional groups. One of the most interesting findings was that the genes encoding multiple two-component systems (TCSs), including CiaHR, LevSR, LiaSR, ScnKR, Hk/Rr1037/1038 and ComDE, were upregulated during acid adaptation. Real-time qRT-PCR confirmed the same trend in the expression profiles of these genes at pH 5.5. To determine the roles of these transduction systems in acid adaptation, mutants with a deletion of the histidine-kinase-encoding genes were constructed and assayed for the acid tolerance response (ATR). The results revealed that inactivation of each of these systems resulted in a mutant that was impaired in ATR, since pre-exposure of these mutants to pH 5.5 did not induce the same level of protection against lethal pH levels as the parent did. A competitive fitness assay showed that all the mutants were unable to compete with the parent strain for persistence in dual-strain mixed cultures at acidic pH, although, with the exception of the mutant in liaS, little effect was observed at neutral pH. The evidence from this study suggests that the multiple TCSs are required for S. mutans to orchestrate its signal transduction networks for optimal adaptation to acidic pH.


2009 ◽  
Vol 191 (23) ◽  
pp. 7363-7366 ◽  
Author(s):  
Yaling Liu ◽  
Robert A. Burne

ABSTRACT Induction of the agmatine deiminase system (AgDS) of Streptococcus mutans requires agmatine and is optimal at low pH. We show here that the VicRK, ComDE, and CiaRH two-component systems influence AgDS gene expression in response to acidic and thermal stresses.


2013 ◽  
Vol 79 (15) ◽  
pp. 4751-4755 ◽  
Author(s):  
Miki Kawada-Matsuo ◽  
Yuichi Oogai ◽  
Takeshi Zendo ◽  
Junichi Nagao ◽  
Yukie Shibata ◽  
...  

ABSTRACTThe novel two-component systems NsrRS and LcrRS are individually associated with resistance against the distinct lantibiotics nisin A and nukacin ISK-1 inStreptococcus mutans. NsrRS regulates the expression of NsrX, which is associated with nisin A binding, and LcrRS regulates the expression of the ABC transporter LctFEG.


2000 ◽  
Author(s):  
Grigory V. Merkulov ◽  
Valentin M. Ievlev ◽  
Evgeny V. Shvedov ◽  
Vadim P. Ampilogov

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sanaz Dehbashi ◽  
Hamed Tahmasebi ◽  
Behrouz Zeyni ◽  
Mohammad Reza Arabestani

Abstract Background Methicillin-resistant Staphylococcus aureus (MRSA)-bloodstream infections (BSI) are predominantly seen in the hospital or healthcare-associated host. Nevertheless, the interactions of virulence factor (VFs) regulators and β-lactam resistance in MRSA-BSI are unclear. This study aims to characterize the molecular relationship of two-component systems of VFs and the expression of the β-lactamase gene in MRSA-BSI isolates. In this study, 639 samples were collected from BSI and identified by phenotypic methods. We performed extensive molecular characterization, including SCCmec type, agr type, VFs gene profiles determinations, and MLST on isolates. Also, a quantitative real-time PCR (q-RT PCR) assay was developed for identifying the gene expressions. Results Ninety-one (91) S. aureus and 61 MRSA (67.0%) strains were detected in BSI samples. The presence of VFs and SCCmec genes in MRSA isolates were as follows: tst (31.4%), etA (18.0%), etB (8.19%), lukS-PVL (31.4%), lukF-PV (18.0%), lukE-lukD (16.3%), edin (3.2%), hla (16.3%), hlb (18.0%), hld (14.7%), hlg (22.9%), SCCmecI (16.3%), SCCmecII (22.9%), SCCmecIII (36.0%), SCCmecIV (21.3%), and SCCmecV (16.3%). Quantitative real-time PCR showed overexpression of mecRI and mecI in the toxigenic isolates. Moreover, RNAIII and sarA genes were the highest expressions of MRSA strains. The multi-locus sequence typing data confirmed a high prevalence of CC5, CC8, and CC30. However, ST30, ST22, and ST5 were the most prevalent in the resistant and toxigenic strains. Conclusion We demonstrated that although regulation of β-lactamase gene expressions is a significant contributor to resistance development, two-component systems also influence antibiotic resistance development in MRSA-BSI isolates. This indicates that resistant strains might have pathogenic potential. We also confirmed that some MLST types are more successful colonizers with a potential for MRSA-BSI.


Sign in / Sign up

Export Citation Format

Share Document