lactamase gene
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 65)

H-INDEX

52
(FIVE YEARS 3)

2022 ◽  
Vol 204 (2) ◽  
Author(s):  
Szymon Walter de Walthoffen

Abstract Purpose Neisseria gonorrhoeae is an etiological agent of gonorrhea which remains a major public health problem the mechanisms that determine resistance to drugs of the beta-lactam class, which are recommended for the treatment of gonorrhea, are currently the most important problem in its treatment. Chromosomal mutations are responsible for resistance to ceftriaxone and cefepime. The possibility of mutations in the gene encoding beta-lactamase (blaTEM) in the penicillinase plasmid may also turn out to be a serious threat. Methods The occurrence of resistance encoded on penicillinase plasmid has been investigated. For this purpose, the susceptibility of bacteria was determined and the gene for resistance to beta-lactams as well as the plasmids themselves was typed. Results Of the 333 strains tested, 21 (6.3%) had the beta-lactamase gene and produced penicillinase. Two of the beta-lactamase: TEM-1 and TEM-135 occurred among the tested strains of N. gonorrhoeae. Most of the known penicillinase plasmid types of N. gonorrhoeae were demonstrated: the Asian, the African, the Toronto/Rio plasmids and Australian variants. Conclusions In the first 3 years, TEM-1 beta-lactamases dominated in N. gonorrhoeae, which were replaced by TEM-135 in the following years of the study. Not all molecular methods are capable of varying the types of penicillinase plasmids. A particularly noteworthy observation is the fact that the Australia-type of penicillinase plasmid (3270 bp) was identified for the first time in Europe, and the second time in the world.


2022 ◽  
Vol 12 ◽  
Author(s):  
Liu Baomo ◽  
Shui Lili ◽  
Robert A. Moran ◽  
Willem van Schaik ◽  
Zhuo Chao

Carbapenem-resistant Enterobacteriaceae (CRE) are a critical public health problem worldwide. Globally, IncX3-type plasmids have emerged as the predominant vehicles carrying the metallo-β-lactamase gene blaNDM. Although blaNDM-bearing IncX3 plasmids have been found in various hosts from diverse environments, whether their transfer and persistence properties vary under different conditions and what factors influence any variation is unknown. By observing the effects of different temperatures on IncX3 plasmid conjugation rates, stability, and effects on host fitness in Escherichia coli, we demonstrate that temperature is an important determinant of plasmid phenotypes. The IncX3 plasmid pGZIncX3 transferred at highest frequencies, was most stable and imposed lower fitness costs at 37°C. Temperature-regulated variation in pGZIncX3 properties involved a thermoregulated plasmid-encoded H-NS-like protein, which was produced at higher levels at 30°C and 42°C and inhibited the expression of type IV secretion system genes involved in conjugation. These findings suggest that blaNDM-bearing IncX3 plasmids are adapted to carriage by enterobacteria that colonize mammalian hosts and could explain the rapid dissemination of these plasmids among human-associated species, particularly in hospital settings.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peiyao Zhang ◽  
Xu Dong ◽  
Kexin Zhou ◽  
Tingting Zhu ◽  
Jialei Liang ◽  
...  

In this work, we characterized a novel chromosome-encoded AmpC β-lactamase gene, blaPRC–1, in an isolate of a newly classified Pseudomonas species designated Pseudomonas wenzhouensis A20, which was isolated from sewage discharged from an animal farm in Wenzhou, China. Susceptibility testing, molecular cloning, and enzyme kinetic parameter analysis were performed to determine the function and enzymatic properties of the β-lactamase. Sequencing and comparative genomic analysis were conducted to clarify the phylogenetic relationship and genetic context of the blaPRC–1 gene. PRC-1 is a 379-amino acid AmpC β-lactamase with a molecular weight of 41.48 kDa and a predicted pI of 6.44, sharing the highest amino acid identity (57.7%) with the functionally characterized AmpC β-lactamase PDC-211 (ARX71249). blaPRC–1 confers resistance to many β-lactam antibiotics, including penicillins (penicillin G, amoxicillin, and amoxicillin-clavulanic acid) and cephalosporins (cefazolin, ceftriaxone, and cefotaxime). The kinetic properties of PRC-1 were compatible with those of a typical class C β-lactamase showing hydrolytic activities against β-lactam antibiotics, and the hydrolytic activity was strongly inhibited by avibactam. The genetic context of blaPRC–1 was relatively conserved, and no mobile genetic element was predicted in its surrounding region. Identification of a novel β-lactamase gene in an unusual environmental bacterium reveals that there might be numerous unknown resistance mechanisms in bacterial populations, which may pose potential risks to human health due to universal horizontal gene transfer between microorganisms. It is therefore of great value to carry out extensive research on the mechanism of antibiotic resistance.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1537
Author(s):  
Yoshiro Sakai ◽  
Kenji Gotoh ◽  
Ryuichi Nakano ◽  
Jun Iwahashi ◽  
Miho Miura ◽  
...  

Background: A carbapenem-resistant Enterobacteriaceae (CRE) outbreak occurred in an advanced emergency medical service center [hereafter referred to as the intensive care unit (ICU)] between 2016 and 2017. Aim: Our objective was to evaluate the infection control measures for CRE outbreaks. Methods: CRE strains were detected in 16 inpatients located at multiple sites. Environmental cultures were performed and CRE strains were detected in 3 of 38 sites tested. Pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and detection of β-lactamase genes were performed against 25 CRE strains. Findings: Molecular typing showed the PFGE patterns of two of four Klebsiella pneumoniae strains were closely related and the same MLST (ST2388), and four of five Enterobacter cloacae strains were closely related and same MLST (ST252). Twenty-three of 25 CRE strains harbored the IMP-1 β-lactamase gene and 15 of 23 CRE strains possessed IncFIIA replicon regions. Despite interventions by the infection control team, new inpatients with the CRE strain continued to appear. Therefore, the ICU was partially closed and the inpatients with CRE were isolated, and the ICU staff was divided into two groups between inpatients with CRE and non-CRE strains to avoid cross-contamination. Although the occurrence of new cases dissipated quickly after the partial closure, a few months were required to eradicate the CRE outbreak. Conclusion: Our data suggest that the various and combined measures that were used for infection control were essential in stopping this CRE outbreak. In particular, partial closure to isolate the ICU and division of the ICU staff were effective.


Author(s):  
Na Li ◽  
Yigang Zeng ◽  
Rong Bao ◽  
Tongyu Zhu ◽  
Demeng Tan ◽  
...  

Klebsiella pneumoniae is a dominant cause of community-acquired and nosocomial infections, specifically among immunocompromised individuals. The increasing occurrence of multidrug-resistant (MDR) isolates has significantly impacted the effectiveness of antimicrobial agents. As antibiotic resistance is becoming increasingly prevalent worldwide, the use of bacteriophages to treat pathogenic bacterial infections has recently gained attention. Elucidating the details of phage-bacteria interactions will provide insights into phage biology and the better development of phage therapy. In this study, a total of 22 K. pneumoniae isolates were assessed for their genetic and phenotypic relatedness by multi-locus sequence typing (MLST), endonuclease S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), and in vitro antibiotic susceptibility testing. In addition, the beta-lactamase gene (blaKPC) was characterized to determine the spread and outbreak of K. pneumoniae carbapenemase (KPC)-producing enterobacterial pathogens. Using these ST11 carbapenem-resistant K. pneumoniae isolates, three phages (NL_ZS_1, NL_ZS_2, and NL_ZS_3) from the family of Podoviridae were isolated and characterized to evaluate the application of lytic phages against the MDR K. pneumoniae isolates. In vitro inhibition assays with three phages and K. pneumoniae strain ZS15 demonstrated the strong lytic potential of the phages, however, followed by the rapid growth of phage-resistant and phage-sensitive mutants, suggesting several anti-phage mechanisms had developed in the host populations. Together, this data adds more comprehensive knowledge to known phage biology and further emphasizes their complexity and future challenges to overcome prior to using phages for controlling this important MDR bacterium.


Author(s):  
Yingcheng Qin ◽  
Xiaonv Duan ◽  
Yuan Peng ◽  
Yongyu Rui

Abstract Background BlaAFM-1 (GenBank Accession No. 143105.1) is a new B1 subclass metallo-β-lactamase gene discovered by our group, and isolated from an Alcaligenes faecalis plasmid that renders carbapenem antibiotics ineffective. In this study, we generated a fast and reliable assay for blaAFM-1 detection. Methods We designed optimum loop-mediated isothermal amplification (LAMP) primers and constructed a recombinant plasmid AFM-1 to specifically detect blaAFM-1. Optimal LAMP primers were used to assess sensitivity of the recombinant plasmid AFM-1 and blaAFM-1-supplemented samples (simulated sputum and simulated feces). Fifty two samples, without blaAFM-1, were used to assess LAMP real-time assay specificity; these samples were verified by conventional PCR and sequencing for the absence of blaAFM-1. Three hundred clinical Gram-negative carbapenem-resistant strains were tested by LAMP assay for strains carrying blaAFM-1, which were confirmed by conventional PCR and Sanger sequencing. We calculated the sensitivity and its 95% confidence interval (95% CI), specificity and its 95% CI, and predictive values of the LAMP assay and conventional PCR/sequencing by investigating positive and negative clinical strains. Results The lowest limit of detection for the recombinant plasmid AFM-1 and blaAFM-1-supplemented samples (in both simulated sputum and simulated feces) was 101 copies/reaction. All amplification curves of the 52 blaAFM-1-free bacteria strains were negative, suggesting the LAMP assay had excellent specificity for detecting blaAFM-1. Among the 300 clinical strains, eight were positive for blaAFM-1 using LAMP. These LAMP results were consistent with conventional PCR and Sanger sequencing data. As with conventional PCR/sequencing, the LAMP method exhibits 100% sensitivity (95% CI 59.8–100%) and 100% specificity (95% CI 98.4–100%) for blaAFM-1 detection. The LAMP assay is also time-efficient (1 h) for blaAFM-1 detection. Conclusions We established a new LAMP assay with high sensitivity and specificity to detect the novel B1-β-lactamase gene, blaAFM-1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Preeti Jain ◽  
Asim Kumar Bepari ◽  
Prosengit Kumer Sen ◽  
Tanzir Rafe ◽  
Rashed Imtiaz ◽  
...  

AbstractMulti-drug-resistance (MDR) is a severe public health concern worldwide, and its containment is more challenging in developing countries due to poor antimicrobial resistance (AMR) surveillance and irrational use of antibiotics. The current study investigated 100 clinical E. coli isolates and revealed that 98% of them were MDR. PCR analysis using 25 selected isolates showed the predominance of metallo-β-lactamase gene blaNDM (80%) and ESBL genes blaOXA (48%) and blaCTX-M-15 (32%). The AmpC gene was detected in 68% of the isolates, while 32% was tetC positive. Notably, 34% of the isolates were resistant to carbapenem. Whole genome sequence (WGS) analysis of an extensively drug-resistant (XDR) isolate (L16) revealed the presence of the notorious sequence type 131 responsible for multi-drug-resistant infections, multiple antibiotic resistance genes (ARGs), virulence genes, and mobile genetic elements that pose risks to environmental transmission. Our results indicate that MDR is alarmingly increasing in Bangladesh that critically limits the treatment option against infections and contributes to further aggravation to the prevailing situation of MDR worldwide. The findings of this study will be valuable in designing sustainable strategies to contain MDR in the region.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1408
Author(s):  
Jehane Y. Abed ◽  
Maxime Déraspe ◽  
Ève Bérubé ◽  
Matthew D’Iorio ◽  
Ken Dewar ◽  
...  

Carbapenemase-producing Enterobacterales, including KPC-2 producers, have become a major clinical problem. During an outbreak in Quebec City, Canada, KPC-2-producing Klebsiella michiganensis and Citrobacter farmeri were isolated from a patient six weeks apart. We determined their complete genome sequences. Both isolates carried nearly identical IncN2 plasmids with blaKPC-2 on a Tn4401b element. Both strains also carried IncP1 plasmids, but that of C. farmeri did not carry a Beta-lactamase gene, whereas that of K. michiganensis carried a second copy of blaKPC-2 on Tn4401b. These results suggest recent plasmid transfer between the two species and a recent transposition event.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S697-S697
Author(s):  
Andrew Walkty ◽  
James Karlowsky ◽  
Philippe Lagace-Wiens ◽  
Alyssa Golden ◽  
Melanie Baxter ◽  
...  

Abstract Background The clinical outcome of patients with bacteremia due to an extended-spectrum beta-lactamase (ESBL)-producing member of the family Enterobacteriaceae who are treated with piperacillin-tazobactam appears to depend, at least in part, on the piperacillin-tazobactam MIC. The purpose of this study was to determine whether there is any association between the MIC of piperacillin-tazobactam and presence of the narrow spectrum OXA-1 beta-lactamase enzyme among ESBL-producing Escherichia coli. Methods E. coli clinical isolates were obtained from patients evaluated at hospitals across Canada (January 2007 to December 2018) as part of an ongoing national surveillance study (CANWARD). ESBL production was confirmed using the Clinical and Laboratory Standards Institute phenotypic method. Susceptibility testing was carried out using custom broth microdilution panels, and all isolates underwent whole genome sequencing for beta-lactamase gene detection. Results In total, 671 ESBL-producing E. coli were identified as part of the CANWARD study. The majority of isolates (92.0%; 617/671) harbored a CTX-M ESBL enzyme. CTX-M-15 (62.3%; 418/671), CTX-M-27 (13.9%; 93/671), and CTX-M-14 (13.4%; 90/671) were the most common variants identified. The narrow spectrum OXA-1 beta-lactamase enzyme was present in 42.6% (286/671) of isolates. OXA-1 was detected in 66.3% (277/418) of isolates with a CTX-M-15 ESBL enzyme versus only 3.6% (9/253) of isolates with other ESBL enzyme types. The piperacillin-tazobactam MIC50 and MIC90 values were 8 µg/mL and 32 µg/mL for isolates that possessed the OXA-1 enzyme versus 2 μg/mL and 8 µg/mL for those that did not. The percentage of ESBL-producing E. coli isolates that were inhibited by a piperacillin-tazobactam MIC of ≤8 μg/mL was 68.5% for isolates that were OXA-1 positive and 93.8% for isolates that were OXA-1 negative. Conclusion The MIC50 and MIC90 values of piperacillin-tazobactam among ESBL-producing E. coli were higher for the subset of isolates that harbored a narrow spectrum OXA-1 beta-lactamase enzyme relative to the subset that did not. This association was primarily observed among ESBL-producers with the CTX-M-15 enzyme variant. OXA-1 was infrequently detected among isolates with other ESBL enzyme types. Disclosures George Zhanel, PhD, AVIR (Grant/Research Support)Iterum (Grant/Research Support)Merck (Grant/Research Support)Pfizer (Grant/Research Support)Sandoz (Grant/Research Support)Sunovion (Grant/Research Support)Venatorx (Grant/Research Support)Verity (Grant/Research Support)


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1236
Author(s):  
Katharina Juraschek ◽  
Annemarie Käsbohrer ◽  
Burkhard Malorny ◽  
Stefan Schwarz ◽  
Diana Meemken ◽  
...  

Plasmids are mobile genetic elements, contributing to the spread of resistance determinants by horizontal gene transfer. Plasmid-mediated quinolone resistances (PMQRs) are important determinants able to decrease the antimicrobial susceptibility of bacteria against fluoroquinolones and quinolones. The PMQR gene qnrS1, especially, is broadly present in the livestock and food sector. Thus, it is of interest to understand the characteristics of plasmids able to carry and disseminate this determinant and therewith contribute to the resistance development against this class of high-priority, critically important antimicrobials. Therefore, we investigated all commensal Escherichia (E.) coli isolates, with reduced susceptibility to quinolones, recovered during the annual zoonosis monitoring 2017 in the pork and beef production chain in Germany (n = 2799). Through short-read whole-genome sequencing and bioinformatics analysis, the composition of the plasmids and factors involved in their occurrence were determined. We analysed the presence and structures of predominant plasmids carrying the PMQR qnrS1. This gene was most frequently located on IncX plasmids. Although the E. coli harbouring these IncX plasmids were highly diverse in their sequence types as well as their phenotypic resistance profiles, the IncX plasmids-carrying the qnrS1 gene were rather conserved. Thus, we only detected three distinct IncX plasmids carrying qnrS1 in the investigated isolates. The IncX plasmids were assigned either to IncX1 or to IncX3. All qnrS1-carrying IncX plasmids further harboured a β-lactamase gene (bla). In addition, all investigated IncX plasmids were transmissible. Overall, we found highly heterogenic E. coli harbouring conserved IncX plasmids as vehicles for the most prevalent qnr gene qnrS1. These IncX plasmids may play an important role in the dissemination of those two resistance determinants and their presence, transfer and co-selection properties require a deeper understanding for a thorough risk assessment.


Sign in / Sign up

Export Citation Format

Share Document