scholarly journals The potentials of Sentinel-2 and LandSat-8 data in green infrastructure extraction, using object based image analysis (OBIA) method

2018 ◽  
Vol 51 (1) ◽  
pp. 231-240 ◽  
Author(s):  
S M Labib ◽  
Angela Harris
2020 ◽  
Vol 202 ◽  
pp. 06036
Author(s):  
Nurhadi Bashit ◽  
Novia Sari Ristianti ◽  
Yudi Eko Windarto ◽  
Desyta Ulfiana

Klaten Regency is one of the regencies in Central Java Province that has an increasing population every year. This can cause an increase in built-up land for human activities. The built-up land needs to be monitored so that the construction is in accordance with the regional development plan so that it does not cause problems such as the occurrence of critical land. Therefore, it is necessary to monitor land use regularly. One method for monitoring land use is the remote sensing method. The remote sensing method is much more efficient in mapping land use because without having to survey the field. The remote sensing method utilizes satellite imagery data that can be processed for land use classification. This study uses the sentinel 2 satellite image data with the Object-Based Image Analysis (OBIA) algorithm to obtain land use classification. Sentinel 2 satellite imagery is a medium resolution image category with a spatial resolution of 10 meters. The land use classification can be used to see the distribution of built-up land in Klaten Regency without having to conduct a field survey. The results of the study obtained a segmentation scale parameter value of 60 and a merge scale parameter value of 85. The classification results obtained by 5 types of land use with OBIA. Agricultural land use dominates with an area of 50% of the total area.


2018 ◽  
Vol 12 (6) ◽  
pp. 720-736 ◽  
Author(s):  
Ming Shang ◽  
Shixin Wang ◽  
Yi Zhou ◽  
Cong Du ◽  
Wenliang Liu

2019 ◽  
Vol 11 (21) ◽  
pp. 2583 ◽  
Author(s):  
Payam Najafi ◽  
Hossein Navid ◽  
Bakhtiar Feizizadeh ◽  
Iraj Eskandari ◽  
Thomas Blaschke

Soil degradation, defined as the lowering and loss of soil functions, is becoming a serious problem worldwide and threatens agricultural production and terrestrial ecosystems. The surface residue of crops is one of the most effective erosion control measures and it increases the soil moisture content. In some areas of the world, the management of soil surface residue (SSR) is crucial for increasing soil fertility, maintaining high soil carbon levels, and reducing the degradation of soil due to rain and wind erosion. Standard methods of measuring the residue cover are time and labor intensive, but remote sensing can support the monitoring of conservation tillage practices applied to large fields. We investigated the potential of per-pixel and object-based image analysis (OBIA) for detecting and estimating the coverage of SSRs after tillage and planting practices for agricultural research fields in Iran using tillage indices for Landsat-8 and novel indices for Sentinel-2A. For validation, SSR was measured in the field through line transects at the beginning of the agricultural season (prior to autumn crop planting). Per-pixel approaches for Landsat-8 satellite images using normalized difference tillage index (NDTI) and simple tillage index (STI) yielded coefficient of determination (R2) values of 0.727 and 0.722, respectively. We developed comparable novel indices for Sentinel-2A satellite data that yielded R2 values of 0.760 and 0.759 for NDTI and STI, respectively, which means that the Sentinel data better matched the ground truth data. We tested several OBIA methods and achieved very high overall accuracies of up to 0.948 for Sentinel-2A and 0.891 for Landsat-8 with a membership function method. The OBIA methods clearly outperformed per-pixel approaches in estimating SSR and bear the potential to substitute or complement ground-based techniques.


Author(s):  
Hana Listi Fitriana ◽  
Suwarsono Suwarsono ◽  
Eko Kusratmoko ◽  
Supriatna Supriatna

Forest and land fires in Indonesia take place almost every year, particularly in the dry season and in Sumatra and Kalimantan. Such fires damage the ecosystem, and lower the quality of life of the community, especially in health, social and economic terms. To establish the location of forest and land fires, it is necessary to identify and analyse burnt areas. Information on these is necessary to determine the environmental damage caused, the impact on the environment, the carbon emissions produced, and the rehabilitation process needed. Identification methods of burnt land was made both visually and digitally by utilising satellite remote sensing data technology. Such data were chosen because they can identify objects quickly and precisely. Landsat 8 image data have many advantages: they can be easily obtained, the archives are long and they are visible to thermal wavelengths. By using a combination of visible, infrared and thermal channels through the semi-automatic object-based image analysis (OBIA) approach, the study aims to identify burnt areas in the geographical area of Indonesia. The research concludes that the semi-automatic OBIA approach based on the red, infrared and thermal spectral bands is a reliable and fast method for identifying burnt areas in regions of Sumatra and Kalimantan.


2017 ◽  
Vol 60 (3) ◽  
pp. 625-633
Author(s):  
Tengfei Su ◽  
Shengwei Zhang

Abstract. Winter wheat is a major food source in many areas, so it is necessary to construct an effective approach for its monitoring based on satellite data. By taking advantage of geographic object-based image analysis (GEOBIA), a winter wheat classification framework was established. Two stages, which included scale selection and feature analysis, were incorporated into the new approach. The scale selection stage was implemented based on an unsupervised method, so human intervention for tuning the scale parameter of image segmentation can be largely saved. The feature analysis stage was performed on the basis of a random forest classification model, and in the experiment this step allowed for feature reduction, which was validated to be beneficial to the classification performance. Keywords: Feature analysis, GEOBIA, Scale selection, Winter wheat.


Sign in / Sign up

Export Citation Format

Share Document