scholarly journals A transcription factor primes the condensin pump

2018 ◽  
Vol 217 (7) ◽  
pp. 2233-2234
Author(s):  
Jennifer L. Gerton

Chromosome condensation is regulated by the condensin complex but whether this process is subject to transcriptional control is poorly understood. In this issue, Schiklenk et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201711097) reveal that the transcription factor Zas1 mediates timely chromosome condensation and promotes transcription of several genes in Saccharomyces pombe, including the condensin subunit Cnd1.

1991 ◽  
Vol 11 (4) ◽  
pp. 1854-1860 ◽  
Author(s):  
N P Shah ◽  
O N Witte ◽  
C T Denny

The t(9;22) Philadelphia chromosome translocation fuses 5' regulatory and coding sequences of the BCR gene to the c-ABL proto-oncogene. This results in the formation of hybrid BCR-ABL mRNAs and proteins. The shift in ABL transcriptional control to the BCR promoter may play a role in cellular transformation mediated by this rearrangement. We have functionally localized the BCR promoter to a region 1 kb 5' of BCR exon 1 coding sequences by using a chloramphenicol acetyltransferase reporter gene assay. Nucleotide sequence analysis of this region revealed many consensus binding sequences for transcription factor SP1 as well as two potential CCAAT box binding factor sites and one putative helix-loop-helix transcription factor binding site. No TATA-like or "initiator" element sequences were found. Because of low steady-state levels of BCR mRNA and the high GC content (78%) of the promoter region, definitive mapping of transcription start sites required artificial amplification of BCR promoter-directed transcripts. Overexpression from the BCR promoter in a COS cell system was effective in demonstrating multiple transcription initiation sites. In order to assess the effects of chromosomal translocation on the transcriptional control of the BCR gene, we determined S1 nuclease protection patterns of poly(A)+ RNA from tumor cell lines. No differences were observed in the locations and levels of BCR transcription initiation sites between those lines that harbored the t(9;22) translocation and those that did not. This demonstrates that BCR promoter function remains intact in spite of genomic rearrangement. The BCR promoter is structurally similar to the ABL promoters. Together, this suggests that the structural fusion of BCR-ABL and not its transcriptional deregulation is primarily responsible for the transforming effect of the t(9;22) translocation.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
William Jonsson ◽  
Nicholas Margolies ◽  
Emily Mirek ◽  
Thomas Gettys ◽  
Tracy Anthony

Abstract Objectives Dietary restriction of the sulfur amino acids (SAAs) improves metabolic health in part via hepatic production of fibroblast growth factor 21 (FGF21). Transcriptional control of Fgf21includes regulation by ATF4 during low protein feeding. Therefore, we aimed to determine the impact of Atf4 deletion on FGF21 levels and associated metabolic outcomes in mice fed a SAA restricted diet. Methods Male and female mice lacking Atf4 globally or in hepatocytes only were fed either a SAA restricted diet (0.17% Met, 0% Cys) or a control diet (0.86% Met, 0% Cys) alongside littermate controls for up to 10 wk. Body mass and composition, energy expenditure and intake were measured. Blood and tissues were collected at specific time points. Transcript (RT-qPCR) and protein (ELISA and Western blot) abundances were analyzed by two factor ANOVA or Kruskal-Wallis Test, with alpha = 0.05. Results Independent of genotype, SAA restriction attenuated weight gain and reduced adiposity despite increased food intake. Improvements in body weight and composition strongly associated with increased energy expenditure regardless of genotype. Deletion of Atf4 did not prevent hepatic Fgf21 nor circulating FGF21 from increasing during chronic SAA restriction (P < 0.05, effect of diet). However, loss of hepatic Atf4 prevented increased circulating FGF21 at 12 h. Overall, males fed the SAA restricted diet induced hepatic Fgf21and serum FGF21 to a greater degree than females. Other known ATF4 targets in liver such as asparagine synthetase, Asns, showed significant induction in the livers of only intact SAA restricted mice. Conversely, loss of Atf4 exacerbated induction of the pro-apoptotic transcription factor Chop (P < 0.05) by SAA restriction. Conclusions Genetic loss of Atf4 delays but does not impede FGF21 production during dietary SAA restriction. Biological sex is a contributing factor to some of the physiological responses to dietary SAA restriction. Funding Sources DK109714 (TGA) and DK096311 (TWG).


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Barbara Nicol ◽  
Sara A. Grimm ◽  
Frédéric Chalmel ◽  
Estelle Lecluze ◽  
Maëlle Pannetier ◽  
...  

Abstract Sex determination of the gonads begins with fate specification of gonadal supporting cells into either ovarian pre-granulosa cells or testicular Sertoli cells. This fate specification hinges on a balance of transcriptional control. Here we report that expression of the transcription factor RUNX1 is enriched in the fetal ovary in rainbow trout, turtle, mouse, goat, and human. In the mouse, RUNX1 marks the supporting cell lineage and becomes pre-granulosa cell-specific as the gonads differentiate. RUNX1 plays complementary/redundant roles with FOXL2 to maintain fetal granulosa cell identity and combined loss of RUNX1 and FOXL2 results in masculinization of fetal ovaries. At the chromatin level, RUNX1 occupancy overlaps partially with FOXL2 occupancy in the fetal ovary, suggesting that RUNX1 and FOXL2 target common sets of genes. These findings identify RUNX1, with an ovary-biased expression pattern conserved across species, as a regulator in securing the identity of ovarian-supporting cells and the ovary.


Virus Genes ◽  
1995 ◽  
Vol 11 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Franziska Jundt ◽  
Ingrid Herr ◽  
Peter Angel ◽  
Harald Zur Hausen ◽  
Tobias Bauknecht

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4246-4246
Author(s):  
Gauthami S. Jalagadugula ◽  
Danny Dhanasekharan ◽  
A.Koneti Rao

Abstract Human erthroleukemia cells (HEL) differentiate towards megakaryocytic (MK) phenotype when stimulated with phorbol 12-myristate-13-acetate (PMA). We observed that the expression of Gq, a protein that plays a major role in platelet signal transduction, is increased in PMA-treated HEL cells. Western blotting revealed that Gq is upregulated in PMA-treated cells relative to untreated cells. Gq gene induction by PMA treatment was investigated with respect to transcriptional control. Serial 5′-truncations of the upstream region (upto 2727 bp from the ATG) of Gq gene were fused to a luciferase (Luc) reporter gene vector, PGL-3 Basic, and were transiently transfected into HEL cells in the absence and presence of PMA (10 nM). After 24 h, reporter gene activities were measured using Dual Luciferase Reporter Assay System (Promega). A reporter plasmid −1042 bp-Luc with a genomic region −1042/−1 showed a 12 fold activity in PMA treated cells and 4 fold activity in untreated cells. Its truncated plasmid with the genomic region −1036/−1 showed a decrease in luciferase activity by 50% in treated cells; and the activity became identical to that in untreated cells. Further truncation between −1036 and −1011 caused a complete loss of activity in both the cells. Thus, a PMA responsive element was localized to a region between −1042 and −1037 bp. Transcription factor data base search (TFSEARCH) predicted two consensus sites for early growth response factor EGR-1 at -1042/−1031 and −1026/−1015. Gel shift studies were performed with two oligos, −1042/−1012 and −1036/−1012, and nuclear extracts from PMA- treated and untreated cells. The studies with −1042/−1012 probe and extracts from treated cells showed that there was nuclear protein binding, which was abolished by competition with the consensus EGR-1 sequence. In extracts from untreated cells, the protein binding was observed but was not competed with consensus EGR-1 sequence. This suggests EGR-1 binding to the region −1042/−1012 in PMA-treated cells and role for this transcription factor in inducing Gq promoter activity. Moreover, studies on the region −1036/−1012 showed nuclear protein binding that was identical between extracts of untreated and treated cells, and it was not competed with consensus EGR-1 sequence. These findings suggest that, EGR-1 binding is localized to −1042/−1037, but not to −1036/−1012. Conclusion: A PMA responsive sequence (−1042/−1037) was identified in the Gq promoter. Our studies suggest that EGR-1 binding to this sequence confers the PMA responsive activity. These studies provide further evidence that EGR-1 plays an important role in the upregulation of Gq expression during PMA induced megakaryocytic differentiation.


2016 ◽  
Vol 212 (2) ◽  
pp. 139-141
Author(s):  
Sergio Simoes ◽  
Ulrich Tepass

Epithelial–mesenchymal transitions (EMTs) are often governed by the transcription factor Snail and entail the loss of apical junctions from epithelial cells. In this issue, Weng and Wieschaus (2016. J Cell Biol. http://dx.doi.org/10.1083/jcb.201508056) report that actomyosin contractility can strengthen junctions to override Snail-dependent junctional disassembly and postpone EMT during Drosophila melanogaster gastrulation.


1989 ◽  
Vol 9 (11) ◽  
pp. 5003-5011 ◽  
Author(s):  
R K Hall ◽  
W L Taylor

Xenopus transcription factor IIIA (TFIIIA) gene expression is stringently regulated during development. The steady-state level of TFIIIA mRNA in a somatic cell is approximately 10(6) times less than in an immature oocyte. We have undertaken studies designed to identify differences in how the TFIIIA gene is transcribed in oocytes and somatic cells. In this regard, we have localized an upstream transcriptional control element in the TFIIIA promoter that stimulates transcription from the TFIIIA promoter approximately threefold in microinjected oocytes. The upstream element, in cis. does not stimulate transcription from the TFIIIA promoter in somatic cells. Thus, the element appears to be oocyte specific in the context of the TFIIIA promoter. However, both oocytes and somatic cells contain a protein (or a related protein) that binds the upstream element. We have termed this protein from oocytes the TFIIIA distal element factor. The sequence of the upstream element is similar to the sequence of the upstream element found in the adenovirus major late promoter that is a binding site for the major late transcription factor. By gel shift analysis, chemical footprinting, methylation intereference, and point mutation analysis, we demonstrate that the TFIIIA distal element factor and major late transcription factor have similar DNA-binding properties.


2017 ◽  
Author(s):  
Abhijeet R. Sonawane ◽  
John Platig ◽  
Maud Fagny ◽  
Cho-Yi Chen ◽  
Joseph N. Paulson ◽  
...  

Although all human tissues carry out common processes, tissues are distinguished by gene expres-sion patterns, implying that distinct regulatory programs control tissue-specificity. In this study, we investigate gene expression and regulation across 38 tissues profiled in the Genotype-Tissue Expression project. We find that network edges (transcription factor to target gene connections) have higher tissue-specificity than network nodes (genes) and that regulating nodes (transcription factors) are less likely to be expressed in a tissue-specific manner as compared to their targets (genes). Gene set enrichment analysis of network targeting also indicates that regulation of tissue-specific function is largely independent of transcription factor expression. In addition, tissue-specific genes are not highly targeted in their corresponding tissue-network. However, they do assume bottleneck positions due to variability in transcription factor targeting and the influence of non-canonical regulatory interactions. These results suggest that tissue-specificity is driven by context-dependent regulatory paths, providing transcriptional control of tissue-specific processes.


2019 ◽  
Author(s):  
Jason Buehler ◽  
Ethan Carpenter ◽  
Sebastian Zeltzer ◽  
Suzu Igarashi ◽  
Michael Rak ◽  
...  

ABSTRACTSustained phosphotinositide3-kinase (PI3K) signaling is critical to the maintenance of herpesvirus latency. We have previously shown that the beta-herpesvirus, human cytomegalovirus (CMV), regulates epidermal growth factor receptor (EGFR), upstream of PI3K, to control states of latency and reactivation. Inhibition of EGFR signaling enhances CMV reactivation from latency and increases viral replication, but the mechanisms by which EGFR impacts replication and latency is not known. We demonstrate that HCMV downregulates MEK/ERK and AKT phosphorylation, but not STAT3 or PLCγ for productive replication. Similarly, inhibition of either MEK/ERK or PI3K/AKT, but not STAT or PLCγ, pathways increases viral reactivation from latently infected CD34+hematopoietic progenitor cells (HPCs), defining a role for these pathways in latency. We hypothesized that CMV modulation of EGFR signaling might impact viral transcription. Indeed, EGF-stimulation increased expression of theUL138latency gene, but not immediate early or early viral genes, suggesting that EGFR signaling promotes latent gene expression. The early growth response-1 (EGR1) transcription factor is induced downstream of EGFR signaling through both PI3K/AKT and MEK/ERK pathways. EGR1 expression is important for the maintenance of HPC stemness and its downregulation drives HPC differentiation and mobilization. We demonstrate that EGR1 binds upstream ofUL138and is sufficient to promoteUL138expression. Further, disruption of EGR1 binding upstream ofUL138prevented CMV from establishing a latent infection in CD34+HPCs. Our results indicate a model whereby UL138 modulation of EGFR signaling feeds back to promote UL138 expression and suppression of replication to establish or maintain viral quiescence.AUTHOR SUMMARYCMV regulates EGFR signaling to balance states of viral latency and replication. CMV blocks downstream PI3K/AKT and MEK/ERK signaling pathways through down-regulation of EGFR at the plasma membrane. PI3K/AKT and MEK/ERK signaling increases expression of the EGR1 transcription factor that is necessary for the maintenance of stem cell stemness. A decrease in EGR1 expression promotes HPC mobilization to the periphery and differentiation, a known stimulus for CMV reactivation. We identified functional EGR1 binding sites upstream of theUL138gene and EGR-1 binding stimulatesUL138expression. Additionally, down-regulation of EGR1 by CMV miR-US22 decreasesUL138expression emphasizing the importance of this transcription factor in expression of this latency gene. Lastly, we demonstrate that a CMV mutant virus lacking an upstream EGR1 binding site is unable to establish latency in CD34+HPCs. This study defines one mechanism by which EGFR signaling impacts viral gene expression to promote CMV latency.


Reproduction ◽  
2004 ◽  
Vol 128 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Sarah Kimmins ◽  
Noora Kotaja ◽  
Irwin Davidson ◽  
Paolo Sassone-Corsi

Male germ-cell differentiation requires spermatogenic stage- and cell-specific gene expression that is achieved by unique chromatin remodeling, transcriptional control and the expression of testis-specific genes or isoforms. Recent findings have shown that the testis has specialized transcription complexes that coordinate the differentiation program of spermatogenesis. There are male germ cell-specific differences in the components of the general transcription machinery. These include upregulated expression of the TATA-binding protein (TBP) family and its associated cofactors. Importantly, a member of the TBP family, TBP-like factor (TLF), has a distribution pattern that is dependent on the spermatogenic cycle and is essential for spermatogenesis. Interestingly TBP-associated factor (TAF7), a factor of the transcription factor (TF)IID complex, is exchanged at a critical stage in germ cell development for the testis-specific paralogue TAF7L. A compelling amount of data has established that cAMP-response-element modulator (CREM), a transcription factor responsive to the cAMP signal transduction pathway, drives expression of key testis-specific genes. In this review we summarize recent advances in the transcription machinery that is testis-specific, gene-selective and necessary for the process of spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document