scholarly journals Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline.

1978 ◽  
Vol 76 (2) ◽  
pp. 386-399 ◽  
Author(s):  
D E Chandler ◽  
J A Williams

Subcellular distribution of the divalent cation-sensitive probe chlorotetracycline (CTC) was observed by fluorescence microscopy in isolated pancreatic acinar cells, dissociated hepatocytes, rod photoreceptors, and erythrocytes. In each cell type, areas containing membranes fluoresced intensely while areas containing no membranes (nuclei and zymogen granules) were not fluorescent. Cell compartments packed with rough endoplasmic reticulum or Golgi vesicles (acinar cells) or plasma membrane-derived membranes (rod outer segments) exhibited a uniform fluorescence. In contrast, cell compartments having large numbers of mitochondria (hepatocytes and the rod inner segment) exhibited a punctate fluorescence. Punctate fluorescence was prominent in the perinuclear and peri-granular areas of isolated acinar cells during CTC efflux, suggesting that under these conditions mitochondrial fluorescence may account for a large portion of acinar cell fluorescence. Fluorometry of dissociated pancreatic acini, preloaded with CTC, showed that application of the mitochondrial inhibitors antimycin A, NaCN, rotenone, or C1CCP, or of the divalent cation ionophore A23187 (all agents known to release mitochondrial calcium) rapidly decreased the fluorescence of acini. In the case of mitochondrial inhibitors, this response could be elicited before but not following the loss of CTC fluorescence induced by bethanechol stimulation. Removal of extracellular Ca2+ and Mg2+ or addition of EDTA also decreased fluorescence but did not prevent secretagogues or mitochondrial inhibitors from eliciting a further response. These data suggest that bethanechol acts to decrease CTC fluorescence at the same intracellular site as do mitochondrial inhibitors. This could be due to release of calcium from either mitochondria or another organelle that requires ATP to sequester calcium.

1983 ◽  
Vol 245 (3) ◽  
pp. G347-G357 ◽  
Author(s):  
H. Streb ◽  
I. Schulz

Ca2+ uptake into isolated exocrine pancreatic cells with highly permeable plasma membrane was determined by measuring the decrease in free Ca2+ concentration of the surrounding incubation medium with a Ca2+-specific electrode. In the presence of Mg-ATP and respiratory substrates the free Ca2+ concentration of the incubation medium decreased rapidly after addition of leaky cells until a stable medium free Ca2+ concentration of 4.2 +/- 0.1 X 10(-7) mol/l was obtained. Changes in the medium free Ca2+ concentration at steady state by addition of Ca2+ or EGTA were buffered by cellular uptake or release, respectively, until the steady-state free Ca2+ concentration was reestablished. When nonmitochondrial Ca2+ uptake was determined in the presence of a combination of mitochondrial inhibitors (10(-5) mol/l antimycin, 5 X 10(-6) mol/l oligomycin, and 10(-2) mol/l azide), the rate of uptake was considerably reduced, while the steady-state concentration was unaltered. In contrast, mitochondrial uptake that could be observed in the presence of the ATPase inhibitor vanadate (2 X 10(-3) mol/l) proceeded at the same rate as the control, but the minimal medium free Ca2+ concentration reached was 2.4 +/- 0.1 X 10(-7) mol/l higher than the control. Addition of secretagogues at steady-state free Ca2+ concentration resulted in a Ca2+ release of 0.73 +/- 0.08 nmol/mg protein. The increase in medium free Ca2+ concentration was entirely transient and followed by reuptake to the prestimulation level. The data indicate that a cytosolic free Ca2+ concentration of 4 X 10(-7) mol/l can be regulated in pancreatic acinar cells by a nonmitochondrial Mg2+-dependent Ca2+ pool.


1983 ◽  
Vol 244 (3) ◽  
pp. G273-G277
Author(s):  
W. F. Stenson ◽  
E. Lobos ◽  
H. J. Wedner

Isolated guinea pig pancreatic acini were specifically depleted of glutathione by treatment with 2-cyclohexene-1-one (2-CHX-1). Untreated acini contained 4.3 +/- 0.6 micrograms of glutathione per milligram protein. Incubation with 1 mM 2-CHX-1 for 5 min at 37 degrees C depleted glutathione to 17% of control values; 5 mM 2-CHX-1 depleted glutathione to less than 4% of control values. Incubation with 2-CHX-1 also impaired the ability of the isolated acini to secrete amylase in response to stimulation with carbachol and the ionophore A23187. The depletion of glutathione and the inhibition of amylase secretion by 2-CHX-1 were both dose dependent and time dependent. Incubation of acini with 2 mM 2-CHX-1 for 15 min at 37 degrees C reduced glutathione levels to 6.6% of control and reduced carbachol-stimulated amylase release to 63% of control. Higher doses of 2-CHX-1 or longer incubations resulted in greater depletion of glutathione and greater inhibition of carbachol-induced amylase release. These data indicate that specific depletion of glutathione impairs the ability of isolated acini to secrete amylase in response to physiological and pharmacologic stimuli and suggest that glutathione has a role in stimulus-secretion coupling in the exocrine pancreas.


2006 ◽  
Vol 291 (3) ◽  
pp. G432-G438 ◽  
Author(s):  
Akihiko Satoh ◽  
Anna S. Gukovskaya ◽  
Joseph R. Reeve ◽  
Tooru Shimosegawa ◽  
Stephen J. Pandol

Although ethanol abuse is the most common cause of pancreatitis, the mechanism of alcohol's effect on the pancreas is not well understood. Previously, we demonstrated that in vitro ethanol treatment of pancreatic acinar cells augmented the CCK-8-induced activation of NF-κB, a key signaling system involved in the inflammatory response of pancreatitis. In the present study, we determine the role for individual PKC isoforms in the sensitizing effect of ethanol on NF-κB activation. Dispersed rat pancreatic acini were treated with and without ethanol and then stimulated with CCK-8; 100 nM CCK-8 caused both NF-κB and PKC-δ, -ε, and -ζ activation, whereas 0.1 nM CCK-8 did not increase PKC-ε, PKC-ζ, or NF-κB activity. CCK-8 (0.1 nM) did activate PKC-δ. PKC-ε activator alone did not cause NF-κB activation; however, together with 0.1 nM CCK-8, it caused NF-κB activation. Ethanol activated PKC-ε without affecting other PKC isoforms or NF-κB activity. Of note, stimulation of acini with ethanol and 0.1 nM CCK-8 resulted in the activation of PKC-δ, PKC-ε, and NF-κB. The NF-κB activation to 0.1 nM CCK-8 in ethanol-pretreated acini was inhibited by both PKC-δ inhibitor and PKC-ε inhibitor. Taken together, these results demonstrate the different modes of activation of PKC isoforms and NF-κB in acini stimulated with ethanol, high-dose CCK-8, and low-dose CCK-8, and furthermore suggest that activation of both PKC-ε and -δ is required for NF-κB activation. These results suggest that ethanol enhances the CCK-8-induced NF-κB activation at least in part through its effects on PKC-ε.


1994 ◽  
Vol 267 (2) ◽  
pp. C385-C393 ◽  
Author(s):  
H. Zhao ◽  
X. Xu ◽  
K. Ujiie ◽  
R. A. Star ◽  
S. Muallem

Recently, we showed that NO2- increases gap junction (GJ) permeability and synchronizes intracellular Ca2+ concentration oscillations in pancreatic acini (Loessburg et al., J. Biol. Chem. 268: 19769-19775, 1993). NO2- is also an end product of nitric oxide (NO) production and metabolism. Because of the effect of NO2- on GJ permeability and the possible importance of NO2- in NO metabolism and cytotoxicity, we used pancreatic acinar cells and intracellular pH (pHi) measurements to study the interaction of nitrogen oxides and NO2- with cellular proteins. Exposing cells to NO2- resulted in a concentration-dependent cytosolic acidification. The acidification did not require the transport of NO2- and was not mediated by diffusion of HNO2. Because the acidification was prevented by CO2-HCO3- and inhibition of carbonic anhydrase, it is possible that other nitrogen oxides present in a solution containing NO2- enter the cells by diffusion and interact with OH- or H2O to stably acidify the cytosol. NO2- itself is shown to be transported by the HCO3- transporters present in the plasma membrane. Thus manipulation of the cellular Cl- gradient and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) were used to show Cl-/NO2- exchange, whereas stimulation of external Na(+)-dependent amiloride-insensitive and DIDS-sensitive pHi increase in acidified cells was used to demonstrate a Na(+)-(NO2-)n cotransport. Hence NO2- can be a convenient substitute for HCO3- when studying HCO3- transport in an open system. The studies also show that cellular levels of nitrogen oxides and NO2- can be modulated by the cellular HCO3(-)-buffering system.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 291 (1) ◽  
pp. G95-G101 ◽  
Author(s):  
Yang Cao ◽  
Sharmila Adhikari ◽  
Abel Damien Ang ◽  
Marie Véronique Clément ◽  
Matthew Wallig ◽  
...  

We investigated the apoptotic pathway activated by crambene (1-cyano-2-hydroxy-3-butene), a plant nitrile, on pancreatic acinar cells. As evidenced by annexin V-FITC staining, crambene treatment for 3 h induced the apoptosis but not necrosis of pancreatic acini. Caspase-3, -8, and -9 activities in acini treated with crambene were significantly higher than in untreated acini. Treatment with caspase-3, -8, and -9 inhibitors inhibited annexin V staining, as well as caspase-3 activity, pointing to an important role of these caspases in crambene-induced acinar cell apoptosis. The mitochondrial membrane potential was collapsed, and cytochrome c was released from the mitochondria in crambene-treated acini. Neither TNF-α nor Fas ligand levels were changed in pancreatic acinar cells after crambene treatment. These results provide evidence for the induction of pancreatic acinar cell apoptosis in vitro by crambene and suggest the involvement of mitochondrial pathway in pancreatic acinar cell apoptosis.


2003 ◽  
Vol 285 (4) ◽  
pp. G726-G734 ◽  
Author(s):  
Claus Schäfer ◽  
Hanna Steffen ◽  
Karen J. Krzykowski ◽  
Burkhard Göke ◽  
Guy E. Groblewski

Ca2+-regulated heat-stable protein of 24 kDa (CRHSP-24) is a serine phosphoprotein originally identified as a physiological substrate for the Ca2+-calmodulin regulated protein phosphatase calcineurin (PP2B). CRHSP-24 is a paralog of the brain-specific mRNA-binding protein PIPPin and was recently shown to interact with the STYX/dead phosphatase protein in developing spermatids (Wishart MJ and Dixon JE. Proc Natl Acad Sci USA 99: 2112–2117, 2002). Investigation of the effects of phorbol ester (12- o-tetradecanoylphorbol-13-acetate; TPA) and cAMP analogs in 32P-labeled pancreatic acini revealed that these agents acutely dephosphorylated CRHSP-24 by a Ca2+-independent mechanism. Indeed, cAMP- and TPA-mediated dephosphorylation of CRHSP-24 was fully inhibited by the PP1/PP2A inhibitor calyculin A, indicating that the protein is regulated by an additional phosphatase other than PP2B. Supporting this, CRHSP-24 dephosphorylation in response to the Ca2+-mobilizing hormone cholecystokinin was differentially inhibited by calyculin A and the PP2B-selective inhibitor cyclosporin A. Stimulation of acini with secretin, a secretagogue that signals through the cAMP pathway in acini, induced CRHSP-24 dephosphorylation in a concentration-dependent manner. Isoelectric focusing and immunoblotting indicated that elevated cellular Ca2+ dephosphorylated CRHSP-24 on at least three serine sites, whereas cAMP and TPA partially dephosphorylated the protein on at least two sites. The cAMP-mediated dephosphorylation of CRHSP-24 was inhibited by low concentrations of okadaic acid (10 nM) and fostriecin (1 μM), suggesting that CRHSP-24 is regulated by PP2A or PP4. Collectively, these data indicate that CRHSP-24 is regulated by diverse and physiologically relevant signaling pathways in acinar cells, including Ca2+, cAMP, and diacylglycerol.


Sign in / Sign up

Export Citation Format

Share Document