intracellular uptake
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 52)

H-INDEX

44
(FIVE YEARS 5)

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7050
Author(s):  
Der-Yen Lee ◽  
Hui-Yi Lin ◽  
Manickavasakam Ramasamy ◽  
Sheng-Chu Kuo ◽  
Pei-Chih Lee ◽  
...  

Natural phenolic products from herbal medicines and dietary plants constitute the main source of lead compounds for the development of the new drug. 4,4-Dimethylcurcumin (DMCU) is a synthetic curcumin derivative and exhibits anticancer activities against breast, colon, lung, and liver cancers. However, further development of DMCU is limited by unfavorable compound properties such as very low aqueous solubility and moderate stability. To increase its solubility, we installed either or both of the ethylene-carbonate-linked L-valine side chains to DMCU phenolic groups and produced targeted 1-trifluoroacetic acid (1-TFA) and 2-trifluoroacetic acid (2-TFA) derivatives. The terminus L-valine of ethylene-carbonate-linked side chain is known to be a L-type amino acid transporter 1 (LAT1) recognition element and therefore, these two derivatives were expected to readily enter into LAT1-expressing cancer cells. In practice, 1-TFA or 2-TFA were synthesized from DMCU in four steps with 34–48% overall yield. Based on the corresponding LC-MS analysis, water solubility of DMCU, 1-TFA, and 2-TFA at room temperature (25 ± 1 °C) were 0.018, 249.7, and 375.8 mg/mL, respectively, indicating >10,000-fold higher solubility of 1-TFA and 2-TFA than DMCU. Importantly, anti-proliferative assay demonstrated that 2-TFA is a potent anti-cancer agent against LAT1-expressing lung cancer cells NCI-H460, NCI-H358, and A549 cells due to its high intracellular uptake compared to DMCU and 1-TFA. In this study, we logically designed and synthesized the targeted compounds, established the LC-MS analytical methods for evaluations of drug solubility and intracellular uptake levels, and showed improved solubility and anti-cancer activities of 2-TFA. Our results provide a strategical direction for the future development of curcuminoid-like phenolic compounds.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Akio Kuroda

AbstractMost cases of mesothelioma are known to result from exposure to asbestos fibers in the environment or occupational ambient air. The following questions regarding asbestos toxicity remain partially unanswered: (i) why asbestos entering the alveoli during respiration exerts toxicity in the pleura; and (ii) how asbestos causes mesothelioma, even though human mesothelial cells are easily killed upon exposure to asbestos. As for the latter question, it is now thought that the frustrated phagocytosis of asbestos fibers by macrophages prolongs inflammatory responses and gives rise to a “mutagenic microenvironment” around mesothelial cells, resulting in their malignant transformation. Based on epidemiological and genetic studies, a carcinogenic model has been proposed in which BRCA1-associated protein 1 mutations are able to suppress cell death in mesothelial cells and increase genomic instability in the mutagenic microenvironment. This leads to additional mutations, such as CDKN2A [p16], NF2, TP53, LATS2, and SETD2, which are associated with mesothelioma carcinogenesis. Regarding the former question, the receptors involved in the intracellular uptake of asbestos and the mechanism of transfer of inhaled asbestos from the alveoli to the pleura are yet to be elucidated. Further studies using live-cell imaging techniques will be critical to fully understanding the mechanisms underlying asbestos toxicity.


Author(s):  
Se-Na Kim ◽  
Chun Gwon Park ◽  
Chang Hee Min ◽  
Seung Ho Lee ◽  
Yun Young Lee ◽  
...  

Heart Rhythm ◽  
2021 ◽  
Author(s):  
Alexander Burashnikov ◽  
Hector Barajas-Martinez ◽  
Robert Cox ◽  
Mark A. Demitrack ◽  
Michael J. Fossler ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1070
Author(s):  
Federica Rinaldi ◽  
Patrizia Nadia Hanieh ◽  
Simona Sennato ◽  
Federica De Santis ◽  
Jacopo Forte ◽  
...  

Treatment of pulmonary infections caused by Mycobacterium abscessus are extremely difficult to treat, as this species is naturally resistant to many common antibiotics. Liposomes are vesicular nanocarriers suitable for hydrophilic and lipophilic drug loading, able to deliver drugs to the target site, and successfully used in different pharmaceutical applications. Moreover, liposomes are biocompatible, biodegradable and nontoxic vesicles and nebulized liposomes are efficient in targeting antibacterial agents to macrophages. The present aim was to formulate rifampicin-loaded liposomes (RIF–Lipo) for lung delivery, in order to increase the local concentration of the antibiotic. Unilamellar liposomal vesicles composed of anionic DPPG mixed with HSPC for rifampicin delivery were designed, prepared, and characterized. Samples were prepared by using the thin-film hydration method. RIF–Lipo and unloaded liposomes were characterized in terms of size, ζ-potential, bilayer features, stability and in different biological media. Rifampicin’s entrapment efficiency and release were also evaluated. Finally, biological activity of RIF-loaded liposomes in Mycobacterium abscessus-infected macrophages was investigated. The results show that RIF-lipo induce a significantly better reduction of intracellular Mycobacterium abscessus viability than the treatment with free drug. Liposome formulation of rifampicin may represent a valuable strategy to enhance the biological activity of the drug against intracellular mycobacteria.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1717
Author(s):  
Fredrik Kullenberg ◽  
Oliver Degerstedt ◽  
Carlemi Calitz ◽  
Nataša Pavlović ◽  
David Balgoma ◽  
...  

Cytostatic effects of doxorubicin in clinically applied doses are often inadequate and limited by systemic toxicity. The main objective of this in vitro study was to determine the anti-tumoral effect (IC50) and intracellular accumulation of free and liposomal doxorubicin (DOX) in four human cancer cell lines (HepG2, Huh7, SNU449 and MCF7). The results of this study showed a correlation between longer DOX exposure time and lower IC50 values, which can be attributed to an increased cellular uptake and intracellular exposure of DOX, ultimately leading to cell death. We found that the total intracellular concentrations of DOX were a median value of 230 times higher than the exposure concentrations after exposure to free DOX. The intracellular uptake of DOX from solution was at least 10 times higher than from liposomal formulation. A physiologically based pharmacokinetic model was developed to translate these novel quantitative findings to a clinical context and to simulate clinically relevant drug concentration–time curves. This showed that a liver tumor resembling the liver cancer cell line SNU449, the most resistant cell line in this study, would not reach therapeutic exposure at a standard clinical parenteral dose of doxorubicin (50 mg/m2), which is serious limitation for this drug. This study emphasizes the importance of in-vitro to in-vivo translations in the assessment of clinical consequence of experimental findings.


Author(s):  
Houli Li ◽  
Zhiyi Luo ◽  
Mingli Peng ◽  
Lili Guo ◽  
Fuqiang Li ◽  
...  

Background: Due to the short biological half-life and serious side effects (especially for heart and kidney), the application of Doxorubicin (Dox) in clinical therapy is strictly limited. To overcome these shortcomings, a novel sustained release formulation of doxorubicin-loaded dextran-coated superparamagnetic iron oxide nanoparticles (Dox-DSPIONs) was prepared. Objective: The purpose of this study was to evaluate the intracellular uptake behavior of Dox-DSPIONs and to investigate their pharmacokinetics and biodistribution properties. Method: Confocal laser scanning microscopy was employed to study the intracellular uptake and release properties of Dox from Dox-DSPIONs in SMMC-7721 cells. Simple high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method was established to study the pharmacokinetics and biodistribution properties of Dox-DSPIONs in vivo after intravenous administration and compared with free Dox. Results: Intracellular uptake experiment indicated that Dox could be released sustainedly from Dox-DSPIONs over time. The pharmacokinetics parameters displayed that the T1/2and AUC0-24h of Dox-DSPIONs were higher than those of free Dox, while the Cmax of Dox-DSPIONs was significantly lower than that of free drug. The biodistribution behaviors of the drug were altered by Dox-DSPIONs in mice, which showed obvious liver targeting, and significantly reduced the distribution of the drug in the heart and kidney. Conclusion: Dox-DSPIONs have the sustained-release property in vitro and in vivo, which could significantly prolong blood circulation time, improve bioavailability, and reduce the side effects of Dox. Therefore, the novel formulation of the Dox-DSPIONs has the potential as a promising drug delivery system in cancer therapy.


2021 ◽  
Author(s):  
Qi Wang ◽  
Hui Zhang ◽  
Qian-qian Ren ◽  
Tian-he Ye ◽  
Yi-ming Liu ◽  
...  

Thermal ablation in combination with transarterial chemoembolization (TACE) has been reported to exert a more powerful anti-tumor effect than thermal ablation alone in hepatocellular carcinoma patients. However, the underlying mechanisms remain unclear. The purpose of this study was to evaluate whether sub-lethal hyperthermia encountered in the peri-ablation zone during thermal ablation enhances the anticancer activity of doxorubicin in chronically hypoxic (encountered in the tumor area after TACE) liver cancer cells and to explore the underlying mechanisms. In the present study, HepG2 cells pre-cultured under chronic hypoxic conditions (1% oxygen) were treated in a 42°C water bath for 15 or 30 minutes, followed by incubation with doxorubicin. Assays were then performed to determine intracellular uptake of doxorubicin, cell viability, apoptosis, cell cycle, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and total antioxidant capacity. The results confirmed that sub-lethal hyperthermia enhanced the intracellular uptake of doxorubicin into hypoxic HepG2 cells. Hyperthermia combined with doxorubicin led to a greater inhibition of cell viability and increased apoptosis in hypoxic HepG2 cells as compared to hyperthermia or doxorubicin alone. In addition, the combination induced apoptosis by increasing ROS and causing disruption of MMP. Pretreatment with the ROS scavenger N-acetyl cysteine significantly inhibited the apoptotic response, suggesting that cell death is ROS-dependent. These findings suggested that sub-lethal hyperthermia enhances the anti-cancer activity of doxorubicin in hypoxic HepG2 cells via a ROS-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document