scholarly journals Disruption of Lymphocyte Function and Signaling in CD45–associated Protein–null Mice

1998 ◽  
Vol 187 (11) ◽  
pp. 1863-1870 ◽  
Author(s):  
Akio Matsuda ◽  
Satoshi Motoya ◽  
Shioko Kimura ◽  
Renee McInnis ◽  
Abby L. Maizel ◽  
...  

CD45-AP specifically associates with CD45, a protein tyrosine phosphatase essential for lymphocyte differentiation and antigen receptor–mediated signal transduction. CD45 is thought to mediate antigen receptor signaling by dephosphorylating regulatory tyrosine residues on Src family protein tyrosine kinases such as Lck. However, the mechanism for regulating CD45 protein tyrosine phosphatase activity remains unclear. CD45-AP–null mice were created to examine the role of CD45-AP in CD45-mediated signal transduction. T and B lymphocytes showed reduced proliferation in response to antigen receptor stimulation. Both mixed leukocyte reaction and cytotoxic T lymphocyte functions of T cells were also markedly decreased in CD45-AP–null mice. Interestingly, the interaction between CD45 and Lck was significantly reduced in CD45-AP–null T cells, indicating that CD45-AP directly or indirectly mediates the interaction of CD45 with Lck. Our data indicate that CD45-AP is required for normal antigen receptor signaling and function in lymphocytes.

1995 ◽  
Vol 181 (1) ◽  
pp. 345-349 ◽  
Author(s):  
K Kawai ◽  
K Kishihara ◽  
T J Molina ◽  
V A Wallace ◽  
T W Mak ◽  
...  

To determine whether p56lck protein tyrosine kinase and CD45 protein tyrosine phosphatase are involved in the signal transduction during intrathymic differentiation of gamma/delta T cells, we have examined the development of T cells expressing V gamma 3 T cell receptor (TCR) in mice deficient for either protein. The skin from both mice contained significantly reduced numbers of dendritic epidermal T cells expressing decreased levels of V gamma 3 TCR at the cell surface. Analysis of the fetal thymus from these mice suggested that maturation of V gamma 3 thymocytes was blocked at the immature stage that was characterized by the low level of V gamma 3 TCR and the high level of heat stable antigen. These results imply that both p56lck and CD45 are involved in the signal transduction during maturation of V gamma 3 T cells in the fetal thymus.


2009 ◽  
Vol 297 (1) ◽  
pp. C133-C139 ◽  
Author(s):  
Shirley C. Chen ◽  
Ranvikram S. Khanna ◽  
Darrell C. Bessette ◽  
Lionel A. Samayawardhena ◽  
Catherine J. Pallen

Protein tyrosine phosphatase-α (PTPα) is a widely expressed receptor-type phosphatase that functions in multiple signaling systems. The actions of PTPα can be regulated by its phosphorylation on serine and tyrosine residues, although little is known about the conditions that promote PTPα phosphorylation. In this study, we tested the ability of several extracellular factors to stimulate PTPα tyrosine phosphorylation. The growth factors IGF-I and acidic FGF induced the highest increase in PTPα phosphorylation at tyrosine 789, followed by PMA and lysophosphatidic acid, while EGF had little effect. Further investigation of IGF-I-induced PTPα tyrosine phosphorylation demonstrated that this occurs through a novel Src family kinase-independent mechanism that does not require focal adhesion kinase, phosphatidylinositol 3-kinase, or MEK. We also show that PTPα physically interacts with the IGF-I receptor. In contrast to IGF-I-induced PTPα phosphorylation, this association does not require IGF-I. The interaction of PTPα and the IGF-I receptor is independent of PTPα catalytic activity, and expression of exogenous PTPα does not promote IGF-I receptor tyrosine dephosphorylation, indicating that PTPα does not act as an IGF-I receptor phosphatase. However, PTPα mediates IGF-I signaling, because IGF-I-stimulated fibroblast migration was reduced by ∼50% in cells lacking PTPα or in cells with mutant PTPα lacking the tyrosine 789 phosphorylation site. Our results suggest that PTPα tyrosine phosphorylation can occur in response to diverse stimuli and can be mediated by various tyrosine kinases. In the case of IGF-I, we propose that IGF-I-induced tyrosine 789 phosphorylation of PTPα, possibly catalyzed by the PTPα-associated IGF-I receptor tyrosine kinase, is required for efficient cell migration in response to this growth factor.


Sign in / Sign up

Export Citation Format

Share Document