scholarly journals Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation.

1992 ◽  
Vol 100 (6) ◽  
pp. 905-932 ◽  
Author(s):  
D W Hilgemann ◽  
S Matsuoka ◽  
G A Nagel ◽  
A Collins

Sodium-calcium exchange current was isolated in inside-out patches excised from guinea pig ventricular cells using the giant patch method. The outward exchange current decayed exponentially upon activation by cytoplasmic sodium (sodium-dependent inactivation). The kinetics and mechanism of the inactivation were studied. (a) The rate of inactivation and the peak current amplitude were both strongly temperature dependent (Q10 = 2.2). (b) An increase in cytoplasmic pH from 6.8 to 7.8 attenuated the current decay and shifted the apparent dissociation constant (Kd) of cytoplasmic calcium for secondary activation of the exchange current from 9.6 microM to < 0.3 microM. (c) The amplitude of exchange current decreased synchronously over the membrane potential range from -120 to 60 mV during the inactivation, indicating that voltage dependence of the exchanger did not change during the inactivation process. The voltage dependence of exchange current also did not change during secondary modulation by cytoplasmic calcium and activation by chymotrypsin. (d) In the presence of 150 mM extracellular sodium and 2 mM extracellular calcium, outward exchange current decayed similarly upon application of cytoplasmic sodium. Upon removal of cytoplasmic sodium in the presence of 2-5 microM cytoplasmic free calcium, the inward exchange current developed in two phases, a fast phase within the time course of solution changes, and a slow phase (tau approximately 4 s) indicative of recovery from sodium-dependent inactivation. (e) Under zero-trans conditions, the inward current was fully activated within solution switch times upon application of cytoplasmic calcium and did not decay. (f) The slow recovery phase of inward current upon removal of cytoplasmic sodium was also present under the zero-trans condition. (g) Sodium-dependent inactivation shows little or no dependence on membrane potential in guinea pig myocyte sarcolemma. (h) Sodium-dependent inactivation of outward current is attenuated in rate and extent as extracellular calcium is decreased. (i) Kinetics of the sodium-dependent inactivation and its dependence on major experimental variables are well described by a simple two-state inactivation model assuming one fully active and one fully inactive exchanger state, whereby the transition to the inactive state takes place from a fully sodium-loaded exchanger conformation with cytoplasmic orientation of binding sites (E1.3Ni).

1992 ◽  
Vol 100 (6) ◽  
pp. 933-961 ◽  
Author(s):  
D W Hilgemann ◽  
A Collins ◽  
S Matsuoka

Dynamic responses of cardiac sodium-calcium exchange current to changes of cytoplasmic calcium and MgATP were monitored and analyzed in giant membrane patches excised from guinea pig myocytes. Secondary dependencies of exchange current on cytoplasmic calcium are accounted for in terms of two mechanisms: (a) The sodium-dependent inactivation process, termed I1 modulation, is itself strongly modulated by cytoplasmic calcium. Recovery from the I1 inactivated state is accelerated by increasing cytoplasmic calcium, and the calculated rate of entrance into I1 inactivation is slowed. (b) A second modulation process, termed I2 modulation, is not sodium dependent. As with I1 modulation, the entrance into I2 inactivation takes place over seconds in the absence of cytoplasmic calcium. The recovery from I2 inactivation is a calcium-dependent transition and is rapid (< 200 ms) in the presence of micromolar free calcium. I1 and I2 modulation can be treated as linear, independent processes to account for most exchange modulation patterns observed: (a) When cytoplasmic calcium is increased or decreased in the presence of high cytoplasmic sodium, outward exchange current turns on or off, respectively, on a time scale of multiple seconds. (b) When sodium is applied in the absence of cytoplasmic calcium, no outward current is activated. However, the full outward current is activated within solution switch time when cytoplasmic calcium is applied together with sodium. (c) The calcium dependence of peak outward current attained upon application of cytoplasmic sodium is shifted by approximately 1 log unit to lower concentrations from the calcium dependence of steady-state exchange current. (d) The time course of outward current decay upon decreasing cytoplasmic calcium becomes more rapid as calcium is reduced into the submicromolar range. (e) Under nearly all conditions, the time courses of current decay during application of cytoplasmic sodium and/or removal of cytoplasmic calcium are well fit by single exponentials. Both of the modulation processes are evidently affected by MgATP. Similar to the effects of cytoplasmic calcium, MgATP slows the entrance into I1 inactivation and accelerates the recovery from inactivation. MgATP additionally slows the decay of outward exchange current upon removal of cytoplasmic calcium by 2-10-fold, indicative of an effect on I2 inactivation. Finally, the effects of cytoplasmic calcium on sodium-calcium exchange current are reconstructed in simulations of the I1 and I2 modulation processes as independent reactions.


1992 ◽  
Vol 100 (6) ◽  
pp. 963-1001 ◽  
Author(s):  
S Matsuoka ◽  
D W Hilgemann

Ion and voltage dependencies of sodium-calcium exchange current were studied in giant membrane patches from guinea pig ventricular cells after deregulation of the exchanger with chymotrypsin. (a) Under zero-trans conditions, the half-maximum concentration (Kh) of cytoplasmic calcium (Cai) for activation of the isolated inward exchange current decreased as the extracellular sodium (Nao) concentration was decreased. The Kh of cytoplasmic sodium (Nai) for activation of the isolated outward exchange current decreased as the extracellular calcium (Cao) concentration was decreased. (b) The current-voltage (I-V) relation of the outward exchange current with saturating concentrations of Nai and Cao had a shallow slope (twofold change in approximately 100 mV) and a slight saturation tendency at very positive potentials. The outward current gained in steepness as the Nai concentration was decreased, such that the Kh for Nai decreased with depolarization. The decrease of Kh for Nai with depolarization was well described by a Boltzmann equation (e alpha.Em/26.6) with a slope (alpha) of -0.06. (c) Voltage dependence of the outward current was lost as the Cao concentration was decreased, and the Kh for Cao increased upon depolarization with a Boltzmann slope of 0.26. (d) The I-V relation of the inward exchange current, under zero-trans conditions, was also almost linear (twofold change in approximately 100 mV) and showed some saturation tendency with hyperpolarization as the Cai concentration was decreased. The Kh for Cai decreased with depolarization (Boltzmann slope, -0.10). Voltage dependence of the inward current was decreased in the presence of a high (300 mM) Nao concentration. (e) In the presence of both Na and Ca on both membrane sides, the I-V relations with saturating Nai show sigmoidal shape and clear saturation at positive potentials. Measured reversal potentials were close to the equilibrium potential expected for a 3 Na to 1 Ca exchange. (f) Nai and Cai interacted competitively with respect to the outward current, but in a mixed competitive-noncompetitive fashion with respect to the inward current. (g) Cai inhibited the outward exchange current in a voltage-dependent manner. The half-effective concentration for inhibition (Ki) by Cai increased upon depolarization with a Boltzmann slope of 0.32 in 25 mM Nai and 0.20 in 100 mM Nai. (h) Nai also inhibited the inward exchange current voltage dependently. The Ki decreased upon depolarization (Boltzmann slope, -0.11 at 3 microM Cai and -0.10 at 1.08 mM Cai).(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 278 (5) ◽  
pp. H1618-H1626 ◽  
Author(s):  
Gregory R. Ferrier ◽  
Isabel M. Redondo ◽  
Cindy A. Mason ◽  
Cindy Mapplebeck ◽  
Susan E. Howlett

Control of contraction and relaxation by membrane potential was investigated in voltage-clamped guinea pig ventricular myocytes at 37°C. Depolarization initiated phasic contractions, followed by sustained contractions that relaxed with repolarization. Corresponding Ca2+ transients were observed with fura 2. Sustained responses were ryanodine sensitive and exhibited sigmoidal activation and deactivation relations, with half-maximal voltages near −46 mV, which is characteristic of the voltage-sensitive release mechanism (VSRM) for sarcoplasmic reticulum Ca2+. Inactivation was not detected. Sustained responses were insensitive to inactivation or block of L-type Ca2+ current ( I Ca-L). The voltage dependence of sustained responses was not affected by changes in intracellular or extracellular Na+ concentration. Furthermore, sustained responses were not inhibited by 2 mM Ni2+. Thus it is improbable that I Ca-L or Na+/Ca2+ exchange generated these sustained responses. However, rapid application of 200 μM tetracaine, which blocks the VSRM, strongly inhibited sustained contractions. Our study indicates that the VSRM includes both a phasic inactivating and a sustained noninactivating component. The sustained component contributes both to initiation and relaxation of contraction.


1984 ◽  
Vol 347 (1) ◽  
pp. 411-430 ◽  
Author(s):  
C C Aickin ◽  
A F Brading ◽  
T V Burdyga

Sign in / Sign up

Export Citation Format

Share Document