contraction and relaxation
Recently Published Documents


TOTAL DOCUMENTS

668
(FIVE YEARS 86)

H-INDEX

51
(FIVE YEARS 4)

YMER Digital ◽  
2022 ◽  
Vol 21 (01) ◽  
pp. 251-260
Author(s):  
Sinthia P ◽  
◽  
M Malathi ◽  
S Nagarajan ◽  
Anitha Juiette ◽  
...  

One of the deep and painful involuntary contractions of skeletal muscle is muscle cramp which takes place during various other conditions. The origin for the cramps that occur during or soon after exercise and the appropriate remedies continue to prove uncertain. Soon after an implant process and forceful workout, past voluntary dehydration cramps occur at many sections. The process of identifying the type of cramp is time consuming and treatment process to cramps is also quite tedious. If not treated at the right time, Muscle cramps may cause vigorous side effects and worsening in day to day physiological activities. The main motive of this vest is to locate and identify the cramp and alert so that further injury can be detected. It would also be helpful in preventing the person from further muscular cramps and other complications. EMG signals which are obtained from adhesive electrodes are amplified by using IC741 (op-amp) with instrumentation amplifier configuration.LM35 temperature sensor is used to monitor the temperature at specified locations. Wherever the cramp occurring possibilities are high. Flex sensor is used to identify the abnormal contraction and relaxation muscles in upper limbs. The three input bio potential signals are fed to the micro controller (Arduino UNO). The main objective of this system is to provide a comfortable vest which would monitor the cramps occurring in athletes whenever it occurs. Therefore with the help of this wearable device muscle cramps occurring at upper limbs can be detected and further injuries, complications such as fractures can be reduced.


2022 ◽  
Author(s):  
Thomas J O'Brien

The pharynx is a is a neuromuscular pump found at the anterior end of the alimentary tract, consisting of 20 muscles and 20 neurons. A proper feeding rate in worms is coordinated by the precise timing of pharyngeal movements, with one complete cycle of synchronous contraction and relaxation of the corpus and terminal bulb termed a “pump”. A simple way to measure C. elegans feeding is to count how many times worms pump in a minute (pumps per minute). Movement of the grinder (in the terminal bulb) can easily be observed using a stereomicroscope, and because cycles of contraction/relaxation are synchronised along the pharynx, pumps per minute can be measured simply by counting grinder movements.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qimin An ◽  
Gengyu Yue ◽  
Xiaoxu Yang ◽  
Jun Lou ◽  
Weixi Shan ◽  
...  

P2X receptors (P2XRs) are trimeric, non-selective cation channels activated by extracellular ATP and widely distributed in the digestive system. P2XRs have an important role in the physiological function of the digestive system, such as neurotransmission, ion transports, proliferation and apoptosis, muscle contraction, and relaxation. P2XRs can be involved in pain mechanisms both centrally and in the periphery and confirmed the association of P2XRs with visceral pain. In the periphery, ATP can be released as a result of tissue injury, visceral distension, or sympathetic activation and can excite nociceptive primary afferents by acting at homomeric P2X(3)R or heteromeric P2X(2/3)R. Thus, peripheral P2XRs, and homomeric P2X(3) and/or heteromeric P2X(2/3)R in particular, constitute attractive targets for analgesic drugs. Recently studies have shown that P2XRs have made significant advances in inflammation and cancer. P2X7R mediates NLRP3 inflammasome activation, cytokine and chemokine release, T lymphocyte survival and differentiation, transcription factor activation, and cell death. The P2X7R is a potent stimulant of inflammation and immunity and a promoter of cancer cell growth. This makes P2X7R an appealing target for anti-inflammatory and anti-cancer therapy. It is believed that with the further study of P2XRs and its subtypes, P2XRs and its specific antagonists will be expected to be widely used in the treatment of human digestive diseases in the future.


2021 ◽  
Author(s):  
Chao Li ◽  
Xiangxiang Zhang ◽  
Boyu Yang ◽  
Feng Wei ◽  
Yongshuo Ren ◽  
...  

The mimicry of living tissues from artificial cells is beneficial to understanding the interaction mechanism among cells, as well as holding great potentials in the tissue engineering field. Self-powered artificial cells capable of reversible deformation are developed by encapsulating living mitochondria, actin proteins, and methylcellulose. Upon the addition of pyruvate molecules, the mitochondria produce ATP molecules as energy sources to trigger the polymerization of actin. ATP molecules were produced by mitochondria (2.76×1010/ml) with the concentrations of 35.8±3.2 µ M, 158.2±19.3 µ M and 200.7±20.1 µ M by adding pyruvate molecules with the concentration of 3 µ M; 12 µ M and 21 µ M, respectively. The reversible deformation of artificial cells is experienced with spindle shape resulting from the polymerization of actins to form filaments adjacent to the lipid bilayer, subsequently back to spherical shape resulting from the depolymerization of actin filaments upon laser irradiations. The linear colonies composed of these artificial cells exhibit collective contraction and relaxation behavior to mimic muscle tissues. At the stage of maximum contraction, the long axis of each GUV is in parallel to each other. All colonies are synchronized in the contraction phase. The deformation of each GUV in the colonies is influenced by its adjacent GUVs. The muscle-like artificial cell colonies paved the path to develop sustainably self-powered artificial tissues in the field of tissue engineering.


2021 ◽  
pp. 931-937
Author(s):  
T.A. Azeez ◽  
M.R. Andrade ◽  
J.D. La Favor

In functional arterial studies using wire myography, the determination of a vessel’s standardized normalization factor (factor k) is an essential step to ensure optimal contraction and relaxation by the arteries when stimulated with their respective vasoactive agents and to obtain reproducible results. The optimal factor k for several arteries have been determined; however, the optimal initial tension and factor k for the arteries involved in erection remains unknown. Hence, in the present study we set out to determine the optimal factor k for the internal iliac artery, proximal and distal internal pudendal artery (IPA), and dorsal penile artery. After isolating, harvesting, and mounting the arteries from male Sprague-Dawley rats on a multi wire myograph, we tested arterial responsivity to high K+-stimulation when the factor k was set at 0.7, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, and 1.2 to determine the factor k setting that results in the greatest K+-induced active force production for each vessel type. The data showed the optimal factor k is 0.90-0.95 for the dorsal penile, distal internal pudendal and internal iliac arteries while it is 0.85-0.90 for proximal internal pudendal artery. These optimal values corresponded to initial passive tension settings of 1.10±0.16 - 1.46±0.23, 1.28±0.20 - 1.69±0.34, 1.03±0.27 - 1.33±0.31, and 1.33±0.31 - 1.77±0.43 mN/mm for the dorsal penile, distal IP, proximal IP, and internal iliac arteries, respectively.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3595
Author(s):  
Aida Llucià-Valldeperas ◽  
Rowan Smal ◽  
Fjodor T. Bekedam ◽  
Margaux Cé ◽  
Xiaoke Pan ◽  
...  

Pulmonary arterial hypertension (PAH) patients eventually die of right heart failure (RHF). Currently, there is no suitable pre-clinical model to study PAH. Therefore, we aim to develop a right heart dysfunction (RHD) model using the 3-dimensional engineered heart tissue (EHT) approach and cardiomyocytes derived from patient-induced pluripotent stem cells (iPSCs) to unravel the mechanisms that determine the fate of a pressure-overloaded right ventricle. iPSCs from PAH and healthy control subjects were differentiated into cardiomyocytes (iPSC-CMs), incorporated into the EHT, and maintained for 28 days. In comparison with control iPSC-CMs, PAH-derived iPSC-CMs exhibited decreased beating frequency and increased contraction and relaxation times. iPSC-CM alignment within the EHT was observed. PAH-derived EHTs exhibited higher force, and contraction and relaxation times compared with control EHTs. Increased afterload was induced using 2× stiffer posts from day 0. Due to high variability, there were no functional differences between normal and stiffer EHTs, and no differences in the hypertrophic gene expression. In conclusion, under baseline spontaneous conditions, PAH-derived iPSC-CMs and EHTs show prolonged contraction compared with controls, as observed clinically in PAH patients. Further optimization of the hypertrophic model and profound characterization may provide a platform for disease modelling and drug screening.


2021 ◽  
Vol 154 (1) ◽  
Author(s):  
Jonathan R.M. Millet ◽  
Luis O. Romero ◽  
Jungsoo Lee ◽  
Briar Bell ◽  
Valeria Vásquez

PIEZO channels are force sensors essential for physiological processes, including baroreception and proprioception. The Caenorhabditis elegans genome encodes an orthologue gene of the Piezo family, pezo-1, which is expressed in several tissues, including the pharynx. This myogenic pump is an essential component of the C. elegans alimentary canal, whose contraction and relaxation are modulated by mechanical stimulation elicited by food content. Whether pezo-1 encodes a mechanosensitive ion channel and contributes to pharyngeal function remains unknown. Here, we leverage genome editing, genetics, microfluidics, and electropharyngeogram recording to establish that pezo-1 is expressed in the pharynx, including in a proprioceptive-like neuron, and regulates pharyngeal function. Knockout (KO) and gain-of-function (GOF) mutants reveal that pezo-1 is involved in fine-tuning pharyngeal pumping frequency, as well as sensing osmolarity and food mechanical properties. Using pressure-clamp experiments in primary C. elegans embryo cultures, we determine that pezo-1 KO cells do not display mechanosensitive currents, whereas cells expressing wild-type or GOF PEZO-1 exhibit mechanosensitivity. Moreover, infecting the Spodoptera frugiperda cell line with a baculovirus containing the G-isoform of pezo-1 (among the longest isoforms) demonstrates that pezo-1 encodes a mechanosensitive channel. Our findings reveal that pezo-1 is a mechanosensitive ion channel that regulates food sensation in worms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michelle L. Law ◽  
Joseph M. Metzger

AbstractCachexia is a muscle wasting syndrome occurring in many advanced cancer patients. Cachexia significantly increases cancer morbidity and mortality. Cardiac atrophy and contractility deficits have been observed in patients and in animal models with cancer cachexia, which may contribute to cachexia pathophysiology. However, underlying contributors to decreased in vivo cardiac contractility are not well understood. In this study, we sought to distinguish heart-intrinsic changes from systemic factors contributing to cachexia-associated cardiac dysfunction. We hypothesized that isolated heart and cardiac myocyte functional deficits underlie in vivo contractile dysfunction. To test this hypothesis, isolated heart and cardiac myocyte function was measured in the colon-26 adenocarcinoma murine model of cachexia. Ex vivo perfused hearts from cachectic animals exhibited marked contraction and relaxation deficits during basal and pacing conditions. Isolated myocytes displayed significantly decreased peak contraction and relaxation rates, which was accompanied by decreased peak calcium and decay rates. This study uncovers significant organ and cellular-level functional deficits in cachectic hearts outside of the catabolic in vivo environment, which is explained in part by impaired calcium cycling. These data provide insight into physiological mechanisms of cardiomyopathy in cachexia, which is critical for the ultimate development of effective treatments for patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rubens P. Homme ◽  
Yuting Zheng ◽  
Irina Smolenkova ◽  
Mahavir Singh ◽  
Suresh C. Tyagi

During acute heart failure (HF), remote ischemic conditioning (RIC) has proven to be beneficial; however, it is currently unclear whether it also extends benefits from chronic congestive, cardiopulmonary heart failure (CHF). Previous studies from our laboratory have shown three phases describing CHF viz. (1) HF with preserved ejection fraction (HFpEF), (2) HF with reduced EF (HFrEF), and (3) HF with reversed EF. Although reciprocal organ interaction, ablation of sympathetic, and calcium signaling genes are associated with HFpEF to HFrEF, the mechanism is unclear. The HFrEF ensues, in part, due to reduced angiogenesis, coronary reserve, and leakage of endocardial endothelial (EE) and finally breakdown of the blood-heart barrier (BHB) integrity. In fact, our hypothesis states that a change in phenotype from compensatory HFpEF to decompensatory HFrEF is determined by a potential decrease in regenerative, proangiogenic factors along with a concomitant increase in epigenetic memory, inflammation that combinedly causes oxidative, and proteolytic stress response. To test this hypothesis, we created CHF by aorta-vena-cava (AV) fistula in a group of mice that were subsequently treated with that of hind-limb RIC. HFpEF vs. HFrEF transition was determined by serial/longitudinal echo measurements. Results revealed an increase in skeletal muscle musclin contents, bone-marrow (CD71), and sympathetic activation (β2-AR) by RIC. We also observed a decrease in vascular density and attenuation of EE-BHB function due to a corresponding increase in the activity of MMP-2, vascular endothelial growth factor (VEGF), caspase, and calpain. This decrease was successfully mitigated by RIC-released skeletal muscle exosomes that contain musclin, the myokine along with bone marrow, and sympathetic activation. In short, based on proteome (omics) analysis, ∼20 proteins that appear to be involved in signaling pathways responsible for the synthesis, contraction, and relaxation of cardiac muscle were found to be the dominant features. Thus, our results support that the CHF phenotype causes dysfunction of cardiac metabolism, its contraction, and relaxation. Interestingly, RIC was able to mitigate many of the deleterious changes, as revealed by our multi-omics findings.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6669
Author(s):  
Akihiko Murai ◽  
Shusuke Kanazawa ◽  
Ko Ayusawa ◽  
Sohei Washino ◽  
Manabu Yoshida ◽  
...  

Excessive muscle tension is implicitly caused by inactivity or tension in daily activities, and it results in increased joint stiffness and vibration, and thus, poor performance, failure, and injury in sports. Therefore, the routine measurement of muscle tension is important. However, a co-contraction observed in excessive muscle tension cannot be easily detected because it does not appear in motion owing to the counteracting muscle tension, and it cannot be measured by conventional motion capture systems. Therefore, we focused on the physiological characteristics of muscle, that is, the increase in muscle belly cross-sectional area during activity and softening during relaxation. Furthermore, we measured muscle tension, especially co-contraction and relaxation, using a DATSURYOKU sensor, which measures the circumference of the applied part. The experiments showed high interclass correlation between muscle activities and circumference across maximal voluntary co-contractions of the thigh muscles and squats. Moreover, the circumference sensor can measure passive muscle deformation that does not appear in muscle activities. Therefore, the DATSURYOKU sensor showed the potential to routinely measure muscle tension and relaxation, thus avoiding the risk of failure and injury owing to excessive muscle tension and can contribute to the realization of preemptive medicine by measuring daily changes.


Sign in / Sign up

Export Citation Format

Share Document