scholarly journals Mechanism of the Schultz-Dale Reaction in the Denervated Diaphragmatic Muscle of the Guinea Pig

1968 ◽  
Vol 51 (5) ◽  
pp. 677-693 ◽  
Author(s):  
F. Alonso-deFlorida ◽  
J. del Castillo ◽  
Xaviera García ◽  
E. Gijón

The mechanism of the contractions elicited by specific antigens in immunologically sensitized muscle tissue (Schultz-Dale responses) has been investigated on single fibers of denervated guinea pig hemidiaphragms. This preparation can be either actively or passively allergized, showing Schultz-Dale responses similar to those of visceral muscle. Specific antigens were applied with an electrically operated microtap to discrete areas of the cell surface while recording the electrical activity with intracellular microelectrodes. In this manner, a depolarizing action of the antigens on the muscle membrane was demonstrated. Brief applications of antigen gave rise to phasic potential changes (antigen potentials) similar to those elicited in the same fibers with acetylcholine-filled microtaps. However, antigen potentials occur only in denervated fibers sensitized to the specific antigen or closely related proteins; they are not seen in either innervated fibers of allergized animals or in denervated, nonallergized fibers. Repeated antigen application to the same area of the fiber causes a local irreversible desensitization. The antigen potentials are associated with a reduction in the resistance of the muscle membrane, similar to that caused by acetylcholine. It is concluded that besides causing the liberation of biogenic amines from the mast cells, antigens exert a direct action on the permeability of the muscle membrane; the molecules of antibody adsorbed to the cells appear to act as specific chemoreceptors for the antigen.

2007 ◽  
Vol 14 (4) ◽  
pp. 442-450 ◽  
Author(s):  
Chandrabali Ghose ◽  
Guillermo I. Perez-Perez ◽  
Victor J. Torres ◽  
Marialuisa Crosatti ◽  
Abraham Nomura ◽  
...  

ABSTRACT The Helicobacter pylori vacA gene encodes a secreted protein (VacA) that alters the function of gastric epithelial cells and T lymphocytes. H. pylori strains containing particular vacA alleles are associated with differential risk of disease. Because the VacA midregion may exist as one of two major types, m1 or m2, serologic responses may potentially be used to differentiate between patients colonized with vacA m1- or vacA m2-positive H. pylori strains. In this study, we examined the utility of specific antigens from the m regions of VacA as allele-specific diagnostic antigens. We report that serological responses to P44M1, an H. pylori m1-specific antigen, are observed predominantly in patients colonized with m1-positive strains, whereas responses to VacA m2 antigens, P48M2 and P55M2, are observed in patients colonized with either m1- or m2-positive strains. In an Asian-American population, serologic responses to VacA m region-specific antigens were not able to predict the risk of development of gastric cancer.


Nature ◽  
1956 ◽  
Vol 177 (4505) ◽  
pp. 427-429 ◽  
Author(s):  
IVAN MOTA ◽  
ITAMAR VUGMAN

1960 ◽  
Vol 16 (5) ◽  
pp. 192-192 ◽  
Author(s):  
L. O. Boréus ◽  
N. Chakravarty

Development ◽  
1969 ◽  
Vol 21 (3) ◽  
pp. 517-537
Author(s):  
Ewert Linder

The appearance of new antigens in the embryo during differentiation has been investigated by a number of authors. Among the proteins studied were myosin (Holtzer, 1961; Ebert, 1962), Jens crystallin (Ten Cate & Van Doorenmaalen, 1950), chick embryo haemoglobin (Wilt, 1962), and keratin during feather formation in chick embryo (Ben-Or & Bell, 1965). The development of liver proteins in the chick embryo was studied by D'Amelio, Mutolo & Piazza (1963). Okada & Sato (1963) and Okada (1965) studied the appearance of a ‘kidney-specific’ antigen in the developing mesonephros. Lahti & Saxen (1966) demonstrated the appearance of mouse kidney-specific tubule antigens during development both in vivo and in vitro. ‘Kidney-specific’ antigens are found in the metanephric proximal secreting tubules of various mammals (Hill & Cruickshank, 1953; Weiler, 1956; Groupe & Kaplan, 1967; Nairn, Ghose & Maxwell, 1967), including man (Nairn, Ghose, Fothergill & McEntegart, 1962), and in the mesonephric tubules of birds.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kyung-Hyun Kim ◽  
Geum-Lan Hong ◽  
Shanika Karunasagara ◽  
Ju-Young Jung

Background: Benign prostatic hyperplasia (BPH) is an age-related disease characterized by progressive proliferation of prostate stromal and epithelial cells. While the precise etiology of BPH is still not clear, the proliferation of epithelial cells has been implicated in the development of the disease. Scaphechinus mirabilis (S. mirabilis) is a marine species belonging to the order Clypeasteroida, which contains flat, burrowing sea urchins. Objective: This study examined the effects of S. mirabilis extract on the proliferation of BPH-1 and LNCaP prostate epithelial cells. Methods: BPH-1 and LNCaP cells were cultured and treated with S. mirabilis extract (50, 100, and 200 μg/ml). The viability of cells treated with S. mirabilis extract was determined by the MTT assay. Results: Proliferation of BPH-1 and testosterone-induced LNCaP cells was inhibited by treatment with S. mirabilis extract. S. mirabilis extract suppressed the expression of androgen-related proteins, such as androgen receptor, prostate-specific antigen, and 5α-reductase 2. S. mirabilis extract inhibited testosterone-induced proliferation. Moreover, S. mirabilis extract induced apoptotic responses by regulating the expression of caspase-9, Bcl-2, and Bax. Conclusion: These findings suggest that S. mirabilis extract abrogated the expression of androgen-related proteins by inducing apoptotic responses, which could be valuable for the design of new therapeutic agents for the treatment of BPH.


1937 ◽  
Vol 37 (3) ◽  
pp. 384-387 ◽  
Author(s):  
Philip R. Edwards

The designation, Newington, is proposed for those cultures ofS. anatumhaving the antigenic formula III XV:eh: 1, 4, 6. A new type, New Brunswick, is described which is represented by the formula III XV:lv: 1, 7 +. Attention is called to the inadequacy of the symbols currently employed in the representation of the non-specific antigens to express correctly the non-specific phases of the Nyborg and New Brunswick types.


1992 ◽  
Vol 73 (3) ◽  
pp. 1093-1101 ◽  
Author(s):  
J. Lucio ◽  
J. D'Brot ◽  
C. B. Guo ◽  
W. M. Abraham ◽  
L. M. Lichtenstein ◽  
...  

Heparin has been shown to act as a competitive inhibitor of inositol 1,4,5-triphosphate (InsP3) receptors in various cell types. Because InsP3 is one of the second messengers involved in stimulus-secretion coupling in mast cells, it is possible that heparin may inhibit mast cell-mediated reactions. Therefore, in allergic sheep, we tested this hypothesis in two mast cell-mediated reactions induced by immunologic and nonimmunologic stimuli: immediate cutaneous reaction (ICR) and acute bronchoconstrictor response (ABR). In 12 sheep allergic to Ascaris suum antigen, the surface area of the skin wheal was determined 20 min after intradermal injection (0.05 ml) of increasing concentrations of specific antigen, compound 48/80, and histamine, without and after pretreatment with heparin (100, 300, or 1,000 U/kg i.v.). Antigen, compound 48/80, and histamine produced concentration-dependent increases in ICR. Heparin “partially” inhibited the ICR to antigen and compound 48/80 in a dose-dependent manner without modifying the ICR to histamine. The heparin preservative benzyl alcohol was ineffective. In 11 additional sheep, specific lung resistance was measured before and after inhalation challenges with antigen, compound 48/80, and histamine without and with aerosol heparin pretreatment (1,000 U/kg). Heparin blocked the antigen- and compound 48/80-induced bronchoconstriction without modifying the airway effects of histamine. In isolated human uterine mast cells, heparin inhibited the anti-immunoglobulin E- but not the calcium ionophore- (A23187) induced histamine release. These data suggest that heparin inhibits the ICR and ABR induced by stimuli that produce immunologic and nonimmunologic mast cell degranulation without attenuating the effects of histamine.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document