scholarly journals Integrable dissipative structures in the gauge theory of gravity

1997 ◽  
Vol 14 (12) ◽  
pp. 3179-3186 ◽  
Author(s):  
L Martina ◽  
O K Pashaev ◽  
G Soliani
2007 ◽  
Vol 04 (08) ◽  
pp. 1239-1257 ◽  
Author(s):  
CARLOS CASTRO

A novel Chern–Simons E8 gauge theory of gravity in D = 15 based on an octicE8 invariant expression in D = 16 (recently constructed by Cederwall and Palmkvist) is developed. A grand unification model of gravity with the other forces is very plausible within the framework of a supersymmetric extension (to incorporate spacetime fermions) of this Chern–Simons E8 gauge theory. We review the construction showing why the ordinary 11D Chern–Simons gravity theory (based on the Anti de Sitter group) can be embedded into a Clifford-algebra valued gauge theory and that an E8 Yang–Mills field theory is a small sector of a Clifford (16) algebra gauge theory. An E8 gauge bundle formulation was instrumental in understanding the topological part of the 11-dim M-theory partition function. The nature of this 11-dim E8 gauge theory remains unknown. We hope that the Chern–Simons E8 gauge theory of gravity in D = 15 advanced in this work may shed some light into solving this problem after a dimensional reduction.


2012 ◽  
Vol 07 ◽  
pp. 158-164 ◽  
Author(s):  
JAMES M. NESTER ◽  
CHIH-HUNG WANG

Many alternative gravity theories use an independent connection which leads to torsion in addition to curvature. Some have argued that there is no physical need to use such connections, that one can always use the Levi-Civita connection and just treat torsion as another tensor field. We explore this issue here in the context of the Poincaré Gauge theory of gravity, which is usually formulated in terms of an affine connection for a Riemann-Cartan geometry (torsion and curvature). We compare the equations obtained by taking as the independent dynamical variables: (i) the orthonormal coframe and the connection and (ii) the orthonormal coframe and the torsion (contortion), and we also consider the coupling to a source. From this analysis we conclude that, at least for this class of theories, torsion should not be considered as just another tensor field.


2015 ◽  
Vol 751 ◽  
pp. 131-134 ◽  
Author(s):  
O. Cebecioğlu ◽  
S. Kibaroğlu

2017 ◽  
Vol 96 (6) ◽  
Author(s):  
Milutin Blagojević ◽  
Branislav Cvetković ◽  
Yuri N. Obukhov

2018 ◽  
Vol 15 (supp01) ◽  
pp. 1840005 ◽  
Author(s):  
Yuri N. Obukhov

We review the basics and the current status of the Poincaré gauge theory of gravity. The general dynamical scheme of Poincaré gauge gravity (PG) is formulated, and its physical consequences are outlined. In particular, we discuss exact solutions with and without torsion, highlight the cosmological aspects, and consider the probing of the spacetime geometry.


Sign in / Sign up

Export Citation Format

Share Document