Atmospheric-pressure plasma technology

2004 ◽  
Vol 46 (12B) ◽  
pp. B63-B75 ◽  
Author(s):  
U Kogelschatz
2021 ◽  
Vol 9 (2) ◽  
pp. 269-307
Author(s):  
Hom Bahadur Baniya ◽  
Rajesh Prakash Guragain ◽  
Deepak Prasad Subedi

This review summarizes the results of cold atmospheric pressure plasma technology application in polymers surface treatment. Attention is given to results of changes in the hydrophilic property of polymer surfaces by incorporation of polar functional groups when exposed to atmospheric pressure plasma, depending on the time of treatment, applied voltage, gas flow rate, and distance from the surface. We have successfully developed a plasma device that is able to generate cold atmospheric pressure argon plasma of low temperature (20 – 26) ° C downstream using a high-voltage power source which can be widely used in materials processing. Therefore, a cost-effective system of generating a plasma jet at atmospheric pressure with potential applications has been developed. Cold atmospheric pressure plasma jet (CAPPJ) has shown a lot of applications in recent years such as in materials processing, surface modification, and biomedical materials processing. CAPPJ has been generated by a high voltage (0-20 kV) and high frequency (20-30 kHz) power supply.<br/> The discharge has been characterized by optical and electrical methods. In order to characterize cold atmospheric pressure argon plasma jet, its electron density, electron temperature, rotational temperature, and vibration temperature have been determined using the power balance method, intensity ratio method, Stark broadening method, and Boltzmann plot method, respectively. The improvement in hydrophilicity of the cold plasma-treated polymer samples was characterized by contact angle measurements, surface free energy analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Contact angle analysis showed that the discharge was effective in improving the wettability of polymers after the treatment. Furthermore, atmospheric plasma can be effectively used to remove surface contamination and to chemically modify different polymer surfaces. The chemical changes, especially oxidation and cross-linking, enhance the surface properties of the polymers.


2021 ◽  
Vol 11 (8) ◽  
pp. 3372
Author(s):  
Azadeh Barjasteh ◽  
Zohreh Dehghani ◽  
Pradeep Lamichhane ◽  
Neha Kaushik ◽  
Eun Ha Choi ◽  
...  

Various reactive oxygen and nitrogen species are accompanied by electrons, ultra-violet (UV) radiation, ions, photons, and electric fields in non-thermal atmospheric pressure plasma. Plasma technology is already used in diverse fields, such as biomedicine, dentistry, agriculture, ozone generation, chemical synthesis, surface treatment, and coating. Non-thermal atmospheric pressure plasma is also considered a promising technology in environmental pollution control. The degradation of organic and inorganic pollutants will be massively advanced by plasma-generated reactive species. Various investigations on the use of non-thermal atmospheric pressure plasma technology for organic wastewater purification have already been performed, and advancements are continuing to be made in this area. This work provides a critical review of the ongoing improvements related to the use of non-thermal plasma in wastewater control and outlines the operational principle, standards, parameters, and boundaries with a special focus on the degradation of organic compounds in wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document