Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations

Nonlinearity ◽  
2010 ◽  
Vol 23 (4) ◽  
pp. 845-873 ◽  
Author(s):  
Guangying Lv ◽  
Mingxin Wang
Author(s):  
Maitere Aguerrea ◽  
Sergei Trofimchuk ◽  
Gabriel Valenzuela

We consider positive travelling fronts, u ( t ,  x )= ϕ ( ν . x + ct ), ϕ (−∞)=0, ϕ (∞)= κ , of the equation u t ( t ,  x )=Δ u ( t ,  x )− u ( t ,  x )+ g ( u ( t − h ,  x )), x ∈ m . This equation is assumed to have exactly two non-negative equilibria: u 1 ≡0 and u 2 ≡ κ >0, but the birth function g ∈ C 2 ( ,  ) may be non-monotone on [0, κ ]. We are therefore interested in the so-called monostable case of the time-delayed reaction–diffusion equation. Our main result shows that for every fixed and sufficiently large velocity c , the positive travelling front ϕ ( ν . x + ct ) is unique (modulo translations). Note that ϕ may be non-monotone. To prove uniqueness, we introduce a small parameter ϵ =1/ c and realize a Lyapunov–Schmidt reduction in a scale of Banach spaces.


Author(s):  
Teresa Faria ◽  
Wenzhang Huang ◽  
Jianhong Wu

We develop a new approach to obtain the existence of travelling wave solutions for reaction–diffusion equations with delayed non-local response. The approach is based on an abstract formulation of the wave profile as a solution of an operational equation in a certain Banach space, coupled with an index formula of the associated Fredholm operator and some careful estimation of the nonlinear perturbation. The general result relates the existence of travelling wave solutions to the existence of heteroclinic connecting orbits of a corresponding functional differential equation, and this result is illustrated by an application to a model describing the population growth when the species has two age classes and the diffusion of the individual during the maturation process leads to an interesting non-local and delayed response for the matured population.


Sign in / Sign up

Export Citation Format

Share Document